本文整理汇总了C#中HugeInt.Lcm方法的典型用法代码示例。如果您正苦于以下问题:C# HugeInt.Lcm方法的具体用法?C# HugeInt.Lcm怎么用?C# HugeInt.Lcm使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类HugeInt
的用法示例。
在下文中一共展示了HugeInt.Lcm方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: IntTestAllExpressions
public void IntTestAllExpressions()
{
var baseExpr = typeof(IntegerExpression);
var allExpressions =
baseExpr.Assembly.GetTypes()
.Where(x => baseExpr.IsAssignableFrom(x) && !x.IsAbstract)
.ToList();
var one = Platform.Ui(1, 1);
using (var a = new HugeInt(-9L))
using (var b = new HugeInt(4L))
using (var c = new HugeRational(6, 7))
using (var r = MpirRandom.Default())
{
var expr = a + (-a * 2) * 3 * (a.Abs() * -2 + -64 + a * a) + (one * 116U) + a;
VerifyPartialResult(r, expr, 44);
expr = expr + a * 5 + (a+b) * (b + 1) * (b + -3) * b + (b * -a) - (b * (one * 25U)) - a + (b << 3) - ((a*b) << 1);
VerifyPartialResult(r, expr, -52);
expr = expr - 2 - 3U + (b - (a << 1)) + (b * b - (one * 15U)) * (b - a) * (a - 11) * (b - 3U) - (-340 - a) + ((one * 20U) - b);
VerifyPartialResult(r, expr, 52);
expr = expr + (-7 - 2 * a) + (28U - 4 * b) + -(a + b * 2) + (3 * a).Abs();
VerifyPartialResult(r, expr, 103);
expr = expr / a + expr / (3 * b) - a / b - b / (a + 10) + a % b - (3 * b) % a + a % (2 * b) - (12 * b) % (-5 * a) + (a * 4 / 8).Rounding(RoundingModes.Floor) + (b * 3 % 7).Rounding(RoundingModes.Ceiling);
VerifyPartialResult(r, expr, -20);
expr = expr - (a * 5).DivideExactly(a) + (b * 7 * 5432198).DivideExactly(5432198) + (b >> 1);
VerifyPartialResult(r, expr, 5);
expr = expr + (b ^ 3) + a.PowerMod(2, b) + (a + 6).PowerMod(b - 1, b * 5) + (a * a * a).Root(3) + (b * b).SquareRoot();
VerifyPartialResult(r, expr, 78);
expr = expr + ((b + 1) & -a) + (b | -a) - (b ^ a) + ~b;
VerifyPartialResult(r, expr, 100);
expr = expr + r.GetInt(b + 1) + r.GetIntBits(3) + r.GetIntBitsChunky(3) + (b * 2).NextPrimeCandidate(r) - b.Gcd(a - 1);
VerifyPartialResult(r, expr, 124);
expr = expr - a.Lcm(b * 3) - (b + 1).Lcm(2) - (-a).Invert(b + 7) - (1-a).RemoveFactors(b / 2) - HugeInt.Power(2, 3) - HugeInt.Factorial(4);
VerifyPartialResult(r, expr, 36);
expr = expr - HugeInt.Primorial(6) + HugeInt.Binomial(4, 2) + HugeInt.Binomial(b, 3) + HugeInt.Fibonacci(6) + HugeInt.Lucas(7);
VerifyPartialResult(r, expr, 53);
expr = expr + c.Numerator + c.Denominator;
VerifyPartialResult(r, expr, 66);
MarkExpressionsUsed(allExpressions, expr);
}
Assert.AreEqual(0, allExpressions.Count, "Expression types not exercised: " + string.Join("",
allExpressions.Select(x => Environment.NewLine + x.Name).OrderBy(x => x)));
}