当前位置: 首页>>代码示例>>C#>>正文


C# HiddenMarkovClassifier.Compute方法代码示例

本文整理汇总了C#中HiddenMarkovClassifier.Compute方法的典型用法代码示例。如果您正苦于以下问题:C# HiddenMarkovClassifier.Compute方法的具体用法?C# HiddenMarkovClassifier.Compute怎么用?C# HiddenMarkovClassifier.Compute使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在HiddenMarkovClassifier的用法示例。


在下文中一共展示了HiddenMarkovClassifier.Compute方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: LearnTest1

        public void LearnTest1()
        {
            // Create a Continuous density Hidden Markov Model Sequence Classifier
            // to detect a univariate sequence and the same sequence backwards.
            double[][] sequences = new double[][] 
            {
                new double[] { 0,1,2,3,4 }, // This is the first  sequence with label = 0
                new double[] { 4,3,2,1,0 }, // This is the second sequence with label = 1
            };

            // Labels for the sequences
            int[] labels = { 0, 1 };

            // Creates a sequence classifier containing 2 hidden Markov Models
            //  with 2 states and an underlying Normal distribution as density.
            NormalDistribution density = new NormalDistribution();
            var classifier = new HiddenMarkovClassifier<NormalDistribution>(2, new Ergodic(2), density);

            // Configure the learning algorithms to train the sequence classifier
            var teacher = new HiddenMarkovClassifierLearning<NormalDistribution>(classifier,

                // Train each model until the log-likelihood changes less than 0.001
                modelIndex => new BaumWelchLearning<NormalDistribution>(classifier.Models[modelIndex])
                {
                    Tolerance = 0.0001,
                    Iterations = 0
                }
            );

            // Train the sequence classifier using the algorithm
            double logLikelihood = teacher.Run(sequences, labels);


            // Calculate the probability that the given
            //  sequences originated from the model
            double likelihood1, likelihood2;

            // Try to classify the first sequence (output should be 0)
            int c1 = classifier.Compute(sequences[0], out likelihood1);

            // Try to classify the second sequence (output should be 1)
            int c2 = classifier.Compute(sequences[1], out likelihood2);

            Assert.AreEqual(0, c1);
            Assert.AreEqual(1, c2);


            Assert.AreEqual(-13.271981026832929, logLikelihood, 1e-10);
            Assert.AreEqual(0.99999791320102149, likelihood1, 1e-10);
            Assert.AreEqual(0.99999791320102149, likelihood2, 1e-10);
            Assert.IsFalse(double.IsNaN(logLikelihood));
            Assert.IsFalse(double.IsNaN(likelihood1));
            Assert.IsFalse(double.IsNaN(likelihood2));
        }
开发者ID:CanerPatir,项目名称:framework,代码行数:54,代码来源:HiddenMarkovClassifier`1Test.cs

示例2: Recognize

        public int Recognize(ISoundSignalReader signal, HiddenMarkovClassifier hmm, out string name,
            SignalVisitor voiceVisitor = null)
        {
            var featureUtility = new FeatureUtility(_engineParameters);
            signal.Reset();
            var features = featureUtility.ExtractFeatures(signal, voiceVisitor).First();
            var observations = _codeBook.Quantize(features.Select(item => new Point(item)).ToArray());

            double[] responsabilities;
            var ret = hmm.Compute(observations, out responsabilities);

            var models = hmm.Models;
            var likelyHoodValue = Double.MinValue;
            name = string.Empty;

            foreach (var model in models)
            {
                var val = model.Evaluate(observations);
                if (val > likelyHoodValue)
                {
                    likelyHoodValue = val;
                    name = model.Tag.ToString();
                }
            }

            return ret;
        }
开发者ID:AdamStefan,项目名称:Speech-Recognition,代码行数:27,代码来源:RecognizeEngineDiscreteHMMLearning.cs

示例3: button1_Click

    private void button1_Click(object sender, EventArgs e)
    {
      var classes = 4;
      var states = new[]{1,2,2,3};
      var cat = new[] {"ខ្ញុំ", "ទៅ", "ខ្លួន", "ក"};
      //var cat = new[] { "A", "B" };

      _hmmc = new HiddenMarkovClassifier(classes, states, 4, cat);

      // Train the ensemble
      var sequences = new[]
                        {
                          new[] {1, 1, 1},
                          new[] {0, 2},
                          new[] {0, 1, 2},
                          new[] {1, 2}
                        };

      var labels = new[] {0, 1, 2, 3};

      var teacher = new HiddenMarkovClassifierLearning(_hmmc, i =>
          new BaumWelchLearning(_hmmc.Models[i])
          {
            Iterations = 0,
            Tolerance = 0.0001
          }
      );

      teacher.Run(sequences, labels);

      var m = _hmmc.Models;

      var test = new[]{1,2};
      double likelihood;
      var label = _hmmc.Compute(test, out likelihood);
      MessageBox.Show(_hmmc.Models[label].Tag.ToString()+ " P =" + likelihood);
    }
开发者ID:xyicheng,项目名称:Accord,代码行数:37,代码来源:WordSeg.cs

示例4: check4

        private static void check4(double[][][] words, HiddenMarkovClassifier<Independent> model, MarkovMultivariateFunction target, HiddenConditionalRandomField<double[]> hcrf)
        {
            double actual;
            double expected;

            foreach (var x in words)
            {
                for (int c = 0; c < model.Classes; c++)
                {
                    for (int i = 0; i < model[c].States; i++)
                    {
                        // Check initial state transitions
                        double xa = model.Priors[c];
                        double xb = Math.Exp(model[c].Probabilities[i]);
                        double xc = model[c].Emissions[i].ProbabilityDensityFunction(x[0]);
                        expected = xa * xb * xc;
                        actual = Math.Exp(target.Factors[c].Compute(-1, i, x, 0, c));
                        Assert.IsTrue(expected.IsRelativelyEqual(actual, 1e-10));
                        Assert.IsFalse(double.IsNaN(actual));
                    }

                    for (int t = 1; t < x.Length; t++)
                    {
                        // Check normal state transitions
                        for (int i = 0; i < model[c].States; i++)
                        {
                            for (int j = 0; j < model[c].States; j++)
                            {
                                double xb = Math.Exp(model[c].Transitions[i, j]);
                                double xc = model[c].Emissions[j].ProbabilityDensityFunction(x[t]);
                                expected = xb * xc;
                                actual = Math.Exp(target.Factors[c].Compute(i, j, x, t, c));
                                Assert.IsTrue(expected.IsRelativelyEqual(actual, 1e-10));
                                Assert.IsFalse(double.IsNaN(actual));
                            }
                        }
                    }

                    actual = Math.Exp(model.LogLikelihood(x, c));
                    expected = Math.Exp(hcrf.LogLikelihood(x, c));
                    Assert.AreEqual(expected, actual, 1e-10);
                    Assert.IsFalse(double.IsNaN(actual));

                    actual = model.Compute(x);
                    expected = hcrf.Compute(x);
                    Assert.AreEqual(expected, actual);
                    Assert.IsFalse(double.IsNaN(actual));
                }
            }
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:50,代码来源:IndependentMarkovFunctionTest.cs

示例5: RecognizeAsync

        public void RecognizeAsync(ISoundSignalReader signal, HiddenMarkovClassifier hmm, Action<string> handleMessage,
            SignalVisitor voiceVisitor = null)
        {
            Action<List<double[]>> action = features =>
            {
                var observations = _codeBook.Quantize(features.Select(item => new Point(item)).ToArray());
                double[] responsabilities;
                var ret = hmm.Compute(observations, out responsabilities);

                var models = hmm.Models;
                var likelyHoodValue = Double.MinValue;

                foreach (var model in models)
                {
                    var val = model.Evaluate(observations);
                    if (val > likelyHoodValue)
                    {
                        likelyHoodValue = val;
                    }
                }

                handleMessage(hmm[ret].Tag.ToString());
            };

            var featureUtility = new FeatureUtility(_engineParameters);
            featureUtility.ExtractFeaturesAsync(signal, action, voiceVisitor);
        }
开发者ID:AdamStefan,项目名称:Speech-Recognition,代码行数:27,代码来源:RecognizeEngineDiscreteHMMLearning.cs

示例6: LearnTest2

        public void LearnTest2()
        {
            // Declare some testing data
            int[][] inputs = new int[][]
            {
                new int[] { 0,0,1,2 },     // Class 0
                new int[] { 0,1,1,2 },     // Class 0
                new int[] { 0,0,0,1,2 },   // Class 0
                new int[] { 0,1,2,2,2 },   // Class 0

                new int[] { 2,2,1,0 },     // Class 1
                new int[] { 2,2,2,1,0 },   // Class 1
                new int[] { 2,2,2,1,0 },   // Class 1
                new int[] { 2,2,2,2,1 },   // Class 1
            };

            int[] outputs = new int[]
            {
                0,0,0,0, // First four sequences are of class 0
                1,1,1,1, // Last four sequences are of class 1
            };


            // We are trying to predict two different classes
            int classes = 2;

            // Each sequence may have up to 3 symbols (0,1,2)
            int symbols = 3;

            // Nested models will have 3 states each
            int[] states = new int[] { 3, 3 };

            // Creates a new Hidden Markov Model Classifier with the given parameters
            HiddenMarkovClassifier classifier = new HiddenMarkovClassifier(classes, states, symbols);


            // Create a new learning algorithm to train the sequence classifier
            var teacher = new HiddenMarkovClassifierLearning(classifier,

                // Train each model until the log-likelihood changes less than 0.001
                modelIndex => new BaumWelchLearning(classifier.Models[modelIndex])
                {
                    Tolerance = 0.001,
                    Iterations = 0
                }
            );

            // Enable support for sequence rejection
            teacher.Rejection = true;

            // Train the sequence classifier using the algorithm
            double likelihood = teacher.Run(inputs, outputs);

            HiddenMarkovModel threshold = classifier.Threshold;

            Assert.AreEqual(6, threshold.States);

            Assert.AreEqual(classifier.Models[0].Transitions[0, 0], threshold.Transitions[0, 0], 1e-10);
            Assert.AreEqual(classifier.Models[0].Transitions[1, 1], threshold.Transitions[1, 1], 1e-10);
            Assert.AreEqual(classifier.Models[0].Transitions[2, 2], threshold.Transitions[2, 2], 1e-10);

            Assert.AreEqual(classifier.Models[1].Transitions[0, 0], threshold.Transitions[3, 3], 1e-10);
            Assert.AreEqual(classifier.Models[1].Transitions[1, 1], threshold.Transitions[4, 4], 1e-10);
            Assert.AreEqual(classifier.Models[1].Transitions[2, 2], threshold.Transitions[5, 5], 1e-10);

            for (int i = 0; i < 3; i++)
                for (int j = 3; j < 6; j++)
                    Assert.AreEqual(Double.NegativeInfinity, threshold.Transitions[i, j]);

            for (int i = 3; i < 6; i++)
                for (int j = 0; j < 3; j++)
                    Assert.AreEqual(Double.NegativeInfinity, threshold.Transitions[i, j]);

            Assert.IsFalse(Matrix.HasNaN(threshold.Transitions));

            classifier.Sensitivity = 0.5;

            // Will assert the models have learned the sequences correctly.
            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = outputs[i];
                int actual = classifier.Compute(inputs[i], out likelihood);
                Assert.AreEqual(expected, actual);
            }


            int[] r0 = new int[] { 1, 1, 0, 0, 2 };


            double logRejection;
            int c = classifier.Compute(r0, out logRejection);

            Assert.AreEqual(-1, c);
            Assert.AreEqual(0.99906957195279988, logRejection);
            Assert.IsFalse(double.IsNaN(logRejection));

            logRejection = threshold.Evaluate(r0);
            Assert.AreEqual(-4.5653702970734793, logRejection, 1e-10);
            Assert.IsFalse(double.IsNaN(logRejection));

//.........这里部分代码省略.........
开发者ID:qusma,项目名称:framework,代码行数:101,代码来源:HiddenMarkovClassifierTest.cs

示例7: LearnTest9

        public void LearnTest9()
        {
            double[][][] inputs = large_gestures;
            int[] outputs = large_outputs;

            int states = 5;
            int iterations = 100;
            double tolerance = 0.01;
            bool rejection = true;
            double sensitivity = 1E-85;

            int dimension = inputs[0][0].Length;

            var hmm = new HiddenMarkovClassifier<MultivariateNormalDistribution>(2,
                new Forward(states), new MultivariateNormalDistribution(dimension));

            // Create the learning algorithm for the ensemble classifier
            var teacher = new HiddenMarkovClassifierLearning<MultivariateNormalDistribution>(hmm,

                // Train each model using the selected convergence criteria
                i => new BaumWelchLearning<MultivariateNormalDistribution>(hmm.Models[i])
                {
                    Tolerance = tolerance,
                    Iterations = iterations,

                    FittingOptions = new NormalOptions()
                    {
                        Regularization = 1e-5
                    }
                }
            );

            teacher.Empirical = true;
            teacher.Rejection = rejection;

            // Run the learning algorithm
            double logLikelihood = teacher.Run(inputs, outputs);

            hmm.Sensitivity = sensitivity;

            for (int i = 0; i < large_gestures.Length; i++)
            {
                int actual = hmm.Compute(large_gestures[i]);
                int expected = large_outputs[i];
                Assert.AreEqual(expected,actual);
            }
        }
开发者ID:qusma,项目名称:framework,代码行数:47,代码来源:HiddenMarkovClassifier`1Test.cs

示例8: SimpleGestureRecognitionTest


//.........这里部分代码省略.........
            double[][] hello =
            {
                new double[] { 1.0, 0.1, 0.0, 0.0 }, // let's say the word
                new double[] { 0.0, 1.0, 0.1, 0.1 }, // hello took 6 frames
                new double[] { 0.0, 1.0, 0.1, 0.1 }, // to be recorded.
                new double[] { 0.0, 0.0, 1.0, 0.0 },
                new double[] { 0.0, 0.0, 1.0, 0.0 },
                new double[] { 0.0, 0.0, 0.1, 1.1 },
            };

            double[][] car =
            {
                new double[] { 0.0, 0.0, 0.0, 1.0 }, // the car word
                new double[] { 0.1, 0.0, 1.0, 0.1 }, // took only 4.
                new double[] { 0.0, 0.0, 0.1, 0.0 },
                new double[] { 1.0, 0.0, 0.0, 0.0 },
            };

            double[][] wardrobe =
            {
                new double[] { 0.0, 0.0, 1.0, 0.0 }, // same for the
                new double[] { 0.1, 0.0, 1.0, 0.1 }, // wardrobe word.
                new double[] { 0.0, 0.1, 1.0, 0.0 },
                new double[] { 0.1, 0.0, 1.0, 0.1 },
            };

            // Here, please note that a real-world example would involve *lots*
            // of samples for each word. Here, we are considering just one from
            // each class which is clearly sub-optimal and should _never_ be done
            // on practice. For example purposes, however, please disregard this.

            // Those are the words we have in our vocabulary:
            //
            double[][][] words = { hello, car, wardrobe }; 

            // Now, let's associate integer labels with them. This is needed
            // for the case where there are multiple samples for each word.
            //
            int[] labels = { 0, 1, 2 };


            // We will create our classifiers assuming an independent
            // Gaussian distribution for each component in our feature
            // vectors (like assuming a Naive Bayes assumption).

            Independent initial = new Independent
            (
                new NormalDistribution(0, 1), 
                new NormalDistribution(0, 1), 
                new NormalDistribution(0, 1), 
                new NormalDistribution(0, 1)  
            );


            // Now, we can proceed and create our classifier. 
            //
            int numberOfWords = 3;  // we are trying to distinguish between 3 words
            int numberOfStates = 5; // this value can be found by trial-and-error

            var classifier = new HiddenMarkovClassifier<Independent>
            (
               classes: numberOfWords, 
               topology: new Forward(numberOfStates), // word classifiers should use a forward topology
               initial: initial
            );

            // Create a new learning algorithm to train the sequence classifier
            var teacher = new HiddenMarkovClassifierLearning<Independent>(classifier,

                // Train each model until the log-likelihood changes less than 0.001
                modelIndex => new BaumWelchLearning<Independent>(classifier.Models[modelIndex])
                {
                    Tolerance = 0.001,
                    Iterations = 100,

                    // This is necessary so the code doesn't blow up when it realize
                    // there is only one sample per word class. But this could also be
                    // needed in normal situations as well.
                    //
                    FittingOptions = new IndependentOptions()
                    {
                        InnerOption = new NormalOptions() { Regularization = 1e-5 }
                    }
                }
            );

            // Finally, we can run the learning algorithm!
            double logLikelihood = teacher.Run(words, labels);

            // At this point, the classifier should be successfully 
            // able to distinguish between our three word classes:
            //
            int c1 = classifier.Compute(hello);
            int c2 = classifier.Compute(car);
            int c3 = classifier.Compute(wardrobe);

            Assert.AreEqual(0, c1);
            Assert.AreEqual(1, c2);
            Assert.AreEqual(2, c3);
        }
开发者ID:KommuSoft,项目名称:accord_framework,代码行数:101,代码来源:HiddenConditionalRandomFieldTest.cs

示例9: LearnTest

        public void LearnTest()
        {
            // Declare some testing data
            int[][] inputs = new int[][]
            {
                new int[] { 0,1,1,0 },   // Class 0
                new int[] { 0,0,1,0 },   // Class 0
                new int[] { 0,1,1,1,0 }, // Class 0
                new int[] { 0,1,0 },     // Class 0

                new int[] { 1,0,0,1 },   // Class 1
                new int[] { 1,1,0,1 },   // Class 1
                new int[] { 1,0,0,0,1 }, // Class 1
                new int[] { 1,0,1 },     // Class 1
            };

            int[] outputs = new int[]
            {
                0,0,0,0, // First four sequences are of class 0
                1,1,1,1, // Last four sequences are of class 1
            };


            // We are trying to predict two different classes
            int classes = 2;

            // Each sequence may have up to two symbols (0 or 1)
            int symbols = 2;

            // Nested models will have two states each
            int[] states = new int[] { 2, 2 };

            // Creates a new Hidden Markov Model Classifier with the given parameters
            HiddenMarkovClassifier classifier = new HiddenMarkovClassifier(classes, states, symbols);


            // Create a new learning algorithm to train the sequence classifier
            var teacher = new HiddenMarkovClassifierLearning(classifier,

                // Train each model until the log-likelihood changes less than 0.001
                modelIndex => new BaumWelchLearning(classifier.Models[modelIndex])
                {
                    Tolerance = 0.001,
                    Iterations = 0
                }
            );

            // Train the sequence classifier using the algorithm
            double likelihood = teacher.Run(inputs, outputs);


            // Will assert the models have learned the sequences correctly.
            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = outputs[i];
                int actual = classifier.Compute(inputs[i], out likelihood);
                Assert.AreEqual(expected, actual);
            }
        }
开发者ID:xyicheng,项目名称:Accord,代码行数:59,代码来源:HiddenMarkovClassifierTest.cs

示例10: LearnTest4

        public void LearnTest4()
        {
            // Create a Continuous density Hidden Markov Model Sequence Classifier
            // to detect a multivariate sequence and the same sequence backwards.
            double[][][] sequences = new double[][][]
            {
                new double[][] 
                { 
                    // This is the first  sequence with label = 0
                    new double[] { 0 },
                    new double[] { 1 },
                    new double[] { 2 },
                    new double[] { 3 },
                    new double[] { 4 },
                }, 

                new double[][]
                {
                        // This is the second sequence with label = 1
                    new double[] { 4 },
                    new double[] { 3 },
                    new double[] { 2 },
                    new double[] { 1 },
                    new double[] { 0 },
                }
            };

            // Labels for the sequences
            int[] labels = { 0, 1 };


            // Create a mixture of two 1-dimensional normal distributions (by default,
            // initialized with zero mean and unit covariance matrices).
            var density = new MultivariateMixture<MultivariateNormalDistribution>(
                new MultivariateNormalDistribution(1),
                new MultivariateNormalDistribution(1));

            // Creates a sequence classifier containing 2 hidden Markov Models with 2 states
            // and an underlying multivariate mixture of Normal distributions as density.
            var classifier = new HiddenMarkovClassifier<MultivariateMixture<MultivariateNormalDistribution>>(
                2, new Ergodic(2), density);

            // Configure the learning algorithms to train the sequence classifier
            var teacher = new HiddenMarkovClassifierLearning<MultivariateMixture<MultivariateNormalDistribution>>(
                classifier,

                // Train each model until the log-likelihood changes less than 0.0001
                modelIndex => new BaumWelchLearning<MultivariateMixture<MultivariateNormalDistribution>>(
                    classifier.Models[modelIndex])
                {
                    Tolerance = 0.0001,
                    Iterations = 0,
                }
            );

            // Train the sequence classifier using the algorithm
            double logLikelihood = teacher.Run(sequences, labels);


            // Calculate the probability that the given
            //  sequences originated from the model
            double likelihood1, likelihood2;

            // Try to classify the 1st sequence (output should be 0)
            int c1 = classifier.Compute(sequences[0], out likelihood1);

            // Try to classify the 2nd sequence (output should be 1)
            int c2 = classifier.Compute(sequences[1], out likelihood2);


            Assert.AreEqual(0, c1);
            Assert.AreEqual(1, c2);

            Assert.AreEqual(-13.271981026832933, logLikelihood, 1e-10);
            Assert.AreEqual(0.99999791320102149, likelihood1, 1e-10);
            Assert.AreEqual(0.99999791320102149, likelihood2, 1e-10);

            Assert.IsFalse(double.IsNaN(logLikelihood));
            Assert.IsFalse(double.IsNaN(likelihood1));
            Assert.IsFalse(double.IsNaN(likelihood2));
        }
开发者ID:qusma,项目名称:framework,代码行数:81,代码来源:HiddenMarkovClassifier`1Test.cs

示例11: btnTrain_Click

        private void btnTrain_Click(object sender, EventArgs e)
        {
            if (dataGridView1.Rows.Count == 0)
            {
                MessageBox.Show("Please load or insert some data first.");
                return;
            }

            int states = (int)numStates.Value;
            int iterations = (int)numIterations.Value;
            double tolerance = (double)numConvergence.Value;

            if (rbStopIterations.Checked) tolerance = 0.0;
            if (rbStopConvergence.Checked) iterations = 0;


            // Retrieve the training data from the data grid view

            int rows = dataGridView1.Rows.Count;
            int[] outputs = new int[rows];
            var sequences = new int[rows][];
            for (int i = 0; i < rows; i++)
            {
                outputs[i] = (int)dataGridView1.Rows[i].Cells["colLabel"].Value - 1;
                sequences[i] = GetFeatures((double[][])dataGridView1.Rows[i].Tag);
            }

            int classes = outputs.Distinct().Count();


            string[] labels = new string[classes];
            for (int i = 0; i < labels.Length; i++)
                labels[i] = (i+1).ToString();


            // Create a sequence classifier for 3 classes
            classifier = new HiddenMarkovClassifier(labels.Length,
                new Forward(states), symbols: 20, names: labels);


            // Create the learning algorithm for the ensemble classifier
            var teacher = new HiddenMarkovClassifierLearning(classifier,

                // Train each model using the selected convergence criteria
                i => new BaumWelchLearning(classifier.Models[i])
                {
                    Tolerance = tolerance,
                    Iterations = iterations,
                }
            );

            // Create and use a rejection threshold model
            teacher.Rejection = cbRejection.Checked;
            teacher.Empirical = true;
            teacher.Smoothing = (double)numSmoothing.Value;


            // Run the learning algorithm
            teacher.Run(sequences, outputs);

            double error = classifier.LogLikelihood(sequences, outputs);


            int hits = 0;
            toolStripProgressBar1.Visible = true;
            toolStripProgressBar1.Value = 0;
            toolStripProgressBar1.Step = 1;
            toolStripProgressBar1.Maximum = dataGridView1.Rows.Count;

            for (int i = 0; i < rows; i++)
            {
                double likelihood;
                int index = classifier.Compute(sequences[i], out likelihood);

                DataGridViewRow row = dataGridView1.Rows[i];

                if (index == -1)
                {
                    row.Cells["colClassification"].Value = String.Empty;
                }
                else
                {
                    row.Cells["colClassification"].Value = classifier.Models[index].Tag;
                }

                int expected = (int)row.Cells["colLabel"].Value;

                if (expected == index + 1)
                {
                    row.Cells[0].Style.BackColor = Color.LightGreen;
                    row.Cells[1].Style.BackColor = Color.LightGreen;
                    row.Cells[2].Style.BackColor = Color.LightGreen;
                    hits++;
                }
                else
                {
                    row.Cells[0].Style.BackColor = Color.White;
                    row.Cells[1].Style.BackColor = Color.White;
                    row.Cells[2].Style.BackColor = Color.White;
                }
//.........这里部分代码省略.........
开发者ID:xyicheng,项目名称:Accord,代码行数:101,代码来源:MainForm.cs

示例12: testThresholdModel

        private static double testThresholdModel(double[][] inputs, int[] outputs, HiddenMarkovClassifier<GeneralDiscreteDistribution> classifier, double likelihood)
        {
            var threshold = classifier.Threshold;

            Assert.AreEqual(classifier.Models[0].Transitions[0, 0], threshold.Transitions[0, 0], 1e-10);
            Assert.AreEqual(classifier.Models[0].Transitions[1, 1], threshold.Transitions[1, 1], 1e-10);
            Assert.AreEqual(classifier.Models[0].Transitions[2, 2], threshold.Transitions[2, 2], 1e-10);

            Assert.AreEqual(classifier.Models[1].Transitions[0, 0], threshold.Transitions[3, 3], 1e-10);
            Assert.AreEqual(classifier.Models[1].Transitions[1, 1], threshold.Transitions[4, 4], 1e-10);
            Assert.AreEqual(classifier.Models[1].Transitions[2, 2], threshold.Transitions[5, 5], 1e-10);

            for (int i = 0; i < 3; i++)
                for (int j = 3; j < 6; j++)
                    Assert.AreEqual(Double.NegativeInfinity, threshold.Transitions[i, j]);

            for (int i = 3; i < 6; i++)
                for (int j = 0; j < 3; j++)
                    Assert.AreEqual(Double.NegativeInfinity, threshold.Transitions[i, j]);

            Assert.IsFalse(Matrix.HasNaN(threshold.Transitions));


            classifier.Sensitivity = 0.5;

            // Will assert the models have learned the sequences correctly.
            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = outputs[i];
                int actual = classifier.Compute(inputs[i], out likelihood);
                Assert.AreEqual(expected, actual);
            }


            double[] r0 = new double[] { 1, 1, 0, 0, 2 };


            double logRejection;
            int c = classifier.Compute(r0, out logRejection);

            Assert.AreEqual(-1, c);
            Assert.AreEqual(0.99993993054384978, logRejection);
            Assert.IsFalse(double.IsNaN(logRejection));

            logRejection = threshold.Evaluate(r0);
            Assert.AreEqual(-5.6367018741984483, logRejection);
            Assert.IsFalse(double.IsNaN(logRejection));

            threshold.Decode(r0, out logRejection);
            Assert.AreEqual(-8.1618027917853073, logRejection);
            Assert.IsFalse(double.IsNaN(logRejection));

            foreach (var model in classifier.Models)
            {
                double[,] A = model.Transitions;

                for (int i = 0; i < A.GetLength(0); i++)
                {
                    double[] row = A.Exp().GetRow(i);
                    double sum = row.Sum();
                    Assert.AreEqual(1, sum, 1e-10);
                }
            }
            {
                double[,] A = classifier.Threshold.Transitions;

                for (int i = 0; i < A.GetLength(0); i++)
                {
                    double[] row = A.GetRow(i);
                    double sum = row.Exp().Sum();
                    Assert.AreEqual(1, sum, 1e-6);
                }
            }
            return likelihood;
        }
开发者ID:CanerPatir,项目名称:framework,代码行数:75,代码来源:HiddenMarkovClassifier`1Test.cs

示例13: testThresholdModel

        private static double testThresholdModel(int[][] inputs, int[] outputs, HiddenMarkovClassifier classifier, double likelihood)
        {
            HiddenMarkovModel threshold = classifier.Threshold;

            Assert.AreEqual(6, threshold.States);

            Assert.AreEqual(classifier.Models[0].Transitions[0, 0], threshold.Transitions[0, 0], 1e-10);
            Assert.AreEqual(classifier.Models[0].Transitions[1, 1], threshold.Transitions[1, 1], 1e-10);
            Assert.AreEqual(classifier.Models[0].Transitions[2, 2], threshold.Transitions[2, 2], 1e-10);

            Assert.AreEqual(classifier.Models[1].Transitions[0, 0], threshold.Transitions[3, 3], 1e-10);
            Assert.AreEqual(classifier.Models[1].Transitions[1, 1], threshold.Transitions[4, 4], 1e-10);
            Assert.AreEqual(classifier.Models[1].Transitions[2, 2], threshold.Transitions[5, 5], 1e-10);

            for (int i = 0; i < 3; i++)
                for (int j = 3; j < 6; j++)
                    Assert.AreEqual(Double.NegativeInfinity, threshold.Transitions[i, j]);

            for (int i = 3; i < 6; i++)
                for (int j = 0; j < 3; j++)
                    Assert.AreEqual(Double.NegativeInfinity, threshold.Transitions[i, j]);

            Assert.IsFalse(Matrix.HasNaN(threshold.Transitions));

            classifier.Sensitivity = 0.5;

            // Will assert the models have learned the sequences correctly.
            for (int i = 0; i < inputs.Length; i++)
            {
                int expected = outputs[i];
                int actual = classifier.Compute(inputs[i], out likelihood);
                Assert.AreEqual(expected, actual);
            }


            int[] r0 = new int[] { 1, 1, 0, 0, 2 };


            double logRejection;
            int c = classifier.Compute(r0, out logRejection);

            Assert.AreEqual(-1, c);
            Assert.AreEqual(0.99994164708402866, logRejection);
            Assert.IsFalse(double.IsNaN(logRejection));

            logRejection = threshold.Evaluate(r0);
            Assert.AreEqual(-5.6077079936209504, logRejection, 1e-10);
            Assert.IsFalse(double.IsNaN(logRejection));

            threshold.Decode(r0, out logRejection);
            Assert.AreEqual(-9.3103554170761686, logRejection, 1e-10);
            Assert.IsFalse(double.IsNaN(logRejection));

            foreach (var model in classifier.Models)
            {
                double[,] A = model.Transitions;

                for (int i = 0; i < A.GetLength(0); i++)
                {
                    double[] row = A.Exp().GetRow(i);
                    double sum = row.Sum();
                    Assert.AreEqual(1, sum, 1e-10);
                }
            }
            {
                double[,] A = classifier.Threshold.Transitions;

                for (int i = 0; i < A.GetLength(0); i++)
                {
                    double[] row = A.GetRow(i);
                    double sum = row.Exp().Sum();
                    Assert.AreEqual(1, sum, 1e-6);
                }
            }
            return likelihood;
        }
开发者ID:RLaumeyer,项目名称:framework,代码行数:76,代码来源:HiddenMarkovClassifierTest.cs

示例14: learnHMM

        /// <summary>
        /// learn Hmm model for samples in given database using Baum Welch unsupervised learning algorithm
        /// then used the learned model to classify the training samples
        /// </summary>
        /// <param name="database"></param>
        /// <returns></returns>
        static HiddenMarkovClassifier<MultivariateNormalDistribution> learnHMM(Database database)
        {
            BindingList<Sequence> samples = database.Samples;
            BindingList<String> classes = database.Classes;

            double[][][] inputs = new double[samples.Count][][];
            int[] outputs = new int[samples.Count];

            for (int i = 0; i < inputs.Length; i++)
            {
                inputs[i] = samples[i].Input;
                outputs[i] = samples[i].Output;
            }

            int states = 5;
            int iterations = 0;
            double tolerance = 0.1;
            bool rejection = true;

            HiddenMarkovClassifier<MultivariateNormalDistribution> hmm = new HiddenMarkovClassifier<MultivariateNormalDistribution>(classes.Count,
                new Forward(states), new MultivariateNormalDistribution(2), classes.ToArray());

            // Create the learning algorithm for the ensemble classifier
            var teacher = new HiddenMarkovClassifierLearning<MultivariateNormalDistribution>(hmm,

                // Train each model using the selected convergence criteria
                i => new BaumWelchLearning<MultivariateNormalDistribution>(hmm.Models[i])
                {
                    Tolerance = tolerance,
                    Iterations = iterations,

                    FittingOptions = new NormalOptions()
                    {
                        Regularization = 1e-5
                    }
                }
            );

            teacher.Empirical = true;
            teacher.Rejection = rejection;

            // Run the learning algorithm
            double error = teacher.Run(inputs, outputs);

            // Classify all training instances
            foreach (var sample in database.Samples)
            {
                sample.RecognizedAs = hmm.Compute(sample.Input);
            }

            return hmm;
        }
开发者ID:tapans,项目名称:Kinect-and-Machine-Learning,代码行数:58,代码来源:Program.cs

示例15: runDiscreteDensityHiddenMarkovClassifierLearningExample

        static void runDiscreteDensityHiddenMarkovClassifierLearningExample()
        {
            // Observation sequences should only contain symbols that are greater than or equal to 0, and lesser than the number of symbols.
            int[][] observationSequences =
            {
                // First class of sequences: starts and ends with zeros, ones in the middle.
                new[] { 0, 1, 1, 1, 0 },
                new[] { 0, 0, 1, 1, 0, 0 },
                new[] { 0, 1, 1, 1, 1, 0 },

                // Second class of sequences: starts with twos and switches to ones until the end.
                new[] { 2, 2, 2, 2, 1, 1, 1, 1, 1 },
                new[] { 2, 2, 1, 2, 1, 1, 1, 1, 1 },
                new[] { 2, 2, 2, 2, 2, 1, 1, 1, 1 },

                // Third class of sequences: can start with any symbols, but ends with three.
                new[] { 0, 0, 1, 1, 3, 3, 3, 3 },
                new[] { 0, 0, 0, 3, 3, 3, 3 },
                new[] { 1, 0, 1, 2, 2, 2, 3, 3 },
                new[] { 1, 1, 2, 3, 3, 3, 3 },
                new[] { 0, 0, 1, 1, 3, 3, 3, 3 },
                new[] { 2, 2, 0, 3, 3, 3, 3 },
                new[] { 1, 0, 1, 2, 3, 3, 3, 3 },
                new[] { 1, 1, 2, 3, 3, 3, 3 },
            };

            // Consider their respective class labels.
            // Class labels have to be zero-based and successive integers.
            int[] classLabels =
            {
                0, 0, 0,  // Sequences 1-3 are from class 0.
                1, 1, 1,  // Sequences 4-6 are from class 1.
                2, 2, 2, 2, 2, 2, 2, 2  // Sequences 7-14 are from class 2.
            };

            // Use a single topology for all inner models.
            ITopology forward = new Forward(states: 3);

            // Create a hidden Markov classifier with the given topology.
            HiddenMarkovClassifier hmc = new HiddenMarkovClassifier(classes: 3, topology: forward, symbols: 4);

            // Create a algorithms to teach each of the inner models.
            var trainer = new HiddenMarkovClassifierLearning(
                hmc,
                // Specify individual training options for each inner model.
                modelIndex => new BaumWelchLearning(hmc.Models[modelIndex])
                {
                    Tolerance = 0.001,  // iterate until log-likelihood changes less than 0.001.
                    Iterations = 0  // don't place an upper limit on the number of iterations.
                }
            );

            // Call its Run method to start learning.
            double averageLogLikelihood = trainer.Run(observationSequences, classLabels);
            Console.WriteLine("average log-likelihood for the observations = {0}", averageLogLikelihood);

            // Check the output classificaton label for some sequences.
            int y1 = hmc.Compute(new[] { 0, 1, 1, 1, 0 });  // output is y1 = 0.
            Console.WriteLine("output class = {0}", y1);
            int y2 = hmc.Compute(new[] { 0, 0, 1, 1, 0, 0 });  // output is y2 = 0.
            Console.WriteLine("output class = {0}", y2);

            int y3 = hmc.Compute(new[] { 2, 2, 2, 2, 1, 1 });  // output is y3 = 1.
            Console.WriteLine("output class = {0}", y3);
            int y4 = hmc.Compute(new[] { 2, 2, 1, 1 });  // output is y4 = 1.
            Console.WriteLine("output class = {0}", y4);

            int y5 = hmc.Compute(new[] { 0, 0, 1, 3, 3, 3 });  // output is y5 = 2.
            Console.WriteLine("output class = {0}", y4);
            int y6 = hmc.Compute(new[] { 2, 0, 2, 2, 3, 3 });  // output is y6 = 2.
            Console.WriteLine("output class = {0}", y6);
        }
开发者ID:sangwook236,项目名称:general-development-and-testing,代码行数:72,代码来源:HiddenMarkovModelExample.cs


注:本文中的HiddenMarkovClassifier.Compute方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。