本文整理汇总了C#中ECPoint.Normalize方法的典型用法代码示例。如果您正苦于以下问题:C# ECPoint.Normalize方法的具体用法?C# ECPoint.Normalize怎么用?C# ECPoint.Normalize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类ECPoint
的用法示例。
在下文中一共展示了ECPoint.Normalize方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: MultiplyPositive
/**
* 'Zeroless' Signed Digit Left-to-Right.
*/
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
ECPoint addP = p.Normalize(), subP = addP.Negate();
ECPoint R0 = addP;
int n = k.BitLength;
int s = k.GetLowestSetBit();
int i = n;
while (--i > s)
{
R0 = R0.TwicePlus(k.TestBit(i) ? addP : subP);
}
R0 = R0.TimesPow2(s);
return R0;
}
示例2: MultiplyPositive
protected override ECPoint MultiplyPositive(ECPoint p, BigInteger k)
{
int[] naf = WNafUtilities.GenerateCompactNaf(k);
ECPoint addP = p.Normalize(), subP = addP.Negate();
ECPoint R = p.Curve.Infinity;
int i = naf.Length;
while (--i >= 0)
{
int ni = naf[i];
int digit = ni >> 16, zeroes = ni & 0xFFFF;
R = R.TwicePlus(digit < 0 ? subP : addP);
R = R.TimesPow2(zeroes);
}
return R;
}
示例3: Precompute
public static WNafPreCompInfo Precompute(ECPoint p, int width, bool includeNegated)
{
ECCurve c = p.Curve;
WNafPreCompInfo wnafPreCompInfo = GetWNafPreCompInfo(c.GetPreCompInfo(p, PRECOMP_NAME));
int iniPreCompLen = 0, reqPreCompLen = 1 << System.Math.Max(0, width - 2);
ECPoint[] preComp = wnafPreCompInfo.PreComp;
if (preComp == null)
{
preComp = EMPTY_POINTS;
}
else
{
iniPreCompLen = preComp.Length;
}
if (iniPreCompLen < reqPreCompLen)
{
preComp = ResizeTable(preComp, reqPreCompLen);
if (reqPreCompLen == 1)
{
preComp[0] = p.Normalize();
}
else
{
int curPreCompLen = iniPreCompLen;
if (curPreCompLen == 0)
{
preComp[0] = p;
curPreCompLen = 1;
}
ECFieldElement iso = null;
if (reqPreCompLen == 2)
{
preComp[1] = p.ThreeTimes();
}
else
{
ECPoint twiceP = wnafPreCompInfo.Twice, last = preComp[curPreCompLen - 1];
if (twiceP == null)
{
twiceP = preComp[0].Twice();
wnafPreCompInfo.Twice = twiceP;
/*
* For Fp curves with Jacobian projective coordinates, use a (quasi-)isomorphism
* where 'twiceP' is "affine", so that the subsequent additions are cheaper. This
* also requires scaling the initial point's X, Y coordinates, and reversing the
* isomorphism as part of the subsequent normalization.
*
* NOTE: The correctness of this optimization depends on:
* 1) additions do not use the curve's A, B coefficients.
* 2) no special cases (i.e. Q +/- Q) when calculating 1P, 3P, 5P, ...
*/
if (ECAlgorithms.IsFpCurve(c) && c.FieldSize >= 64)
{
switch (c.CoordinateSystem)
{
case ECCurve.COORD_JACOBIAN:
case ECCurve.COORD_JACOBIAN_CHUDNOVSKY:
case ECCurve.COORD_JACOBIAN_MODIFIED:
{
iso = twiceP.GetZCoord(0);
twiceP = c.CreatePoint(twiceP.XCoord.ToBigInteger(),
twiceP.YCoord.ToBigInteger());
ECFieldElement iso2 = iso.Square(), iso3 = iso2.Multiply(iso);
last = last.ScaleX(iso2).ScaleY(iso3);
if (iniPreCompLen == 0)
{
preComp[0] = last;
}
break;
}
}
}
}
while (curPreCompLen < reqPreCompLen)
{
/*
* Compute the new ECPoints for the precomputation array. The values 1, 3,
* 5, ..., 2^(width-1)-1 times p are computed
*/
preComp[curPreCompLen++] = last = last.Add(twiceP);
}
}
/*
* Having oft-used operands in affine form makes operations faster.
*/
c.NormalizeAll(preComp, iniPreCompLen, reqPreCompLen - iniPreCompLen, iso);
}
}
//.........这里部分代码省略.........