本文整理汇总了C#中ECFieldElement类的典型用法代码示例。如果您正苦于以下问题:C# ECFieldElement类的具体用法?C# ECFieldElement怎么用?C# ECFieldElement使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
ECFieldElement类属于命名空间,在下文中一共展示了ECFieldElement类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: TestMultiply2
public void TestMultiply2()
{
int COUNT = 100;
ECFieldElement[] inputs = new ECFieldElement[COUNT];
BigInteger[] INPUTS = new BigInteger[COUNT];
for (int i = 0; i < inputs.Length; ++i)
{
inputs[i] = GenerateMultiplyInput_Random();
INPUTS[i] = inputs[i].ToBigInteger();
}
for (int j = 0; j < inputs.Length; ++j)
{
for (int k = 0; k < inputs.Length; ++k)
{
BigInteger R = INPUTS[j].Multiply(INPUTS[k]).Mod(Q);
ECFieldElement z = inputs[j].Multiply(inputs[k]);
BigInteger Z = z.ToBigInteger();
Assert.AreEqual(R, Z);
}
}
}
示例2: Divide
public override ECFieldElement Divide(ECFieldElement b)
{
//return Multiply(b.Invert());
uint[] z = Nat256.Create();
Mod.Invert(Curve25519Field.P, ((Curve25519FieldElement)b).x, z);
Curve25519Field.Multiply(z, x, z);
return new Curve25519FieldElement(z);
}
示例3: Divide
public override ECFieldElement Divide(ECFieldElement b)
{
//return Multiply(b.Invert());
uint[] z = Nat.Create(12);
Mod.Invert(SecP384R1Field.P, ((SecP384R1FieldElement)b).x, z);
SecP384R1Field.Multiply(z, x, z);
return new SecP384R1FieldElement(z);
}
示例4: ECCurve
private ECCurve(BigInteger Q, BigInteger A, BigInteger B, BigInteger N, byte[] G)
{
this.Q = Q;
this.A = new ECFieldElement(A, this);
this.B = new ECFieldElement(B, this);
this.N = N;
this.Infinity = new ECPoint(null, null, this);
this.G = ECPoint.DecodePoint(G, this);
}
示例5: CreateRawPoint
protected internal override ECPoint CreateRawPoint(ECFieldElement x, ECFieldElement y, bool withCompression)
{
return new SecT163R2Point(this, x, y, withCompression);
}
示例6: Multiply
public override ECFieldElement Multiply(ECFieldElement b)
{
uint[] z = Nat.Create(12);
SecP384R1Field.Multiply(x, ((SecP384R1FieldElement)b).x, z);
return new SecP384R1FieldElement(z);
}
示例7: Equals
public override bool Equals(ECFieldElement other)
{
return Equals(other as SecP384R1FieldElement);
}
示例8: MultiplyMinusProduct
public override ECFieldElement MultiplyMinusProduct(ECFieldElement b, ECFieldElement x, ECFieldElement y)
{
return MultiplyPlusProduct(b, x, y);
}
示例9: Subtract
public override ECFieldElement Subtract(ECFieldElement b)
{
// Addition and Subtraction are the same in F2m
return Add(b);
}
示例10: Divide
public override ECFieldElement Divide(ECFieldElement b)
{
return Multiply(b.Invert());
}
示例11: Add
//.........这里部分代码省略.........
bool Z1IsOne = Z1.IsOne;
uint[] U2, S2;
if (Z1IsOne)
{
U2 = X2.x;
S2 = Y2.x;
}
else
{
S2 = t3;
Curve25519Field.Square(Z1.x, S2);
U2 = t2;
Curve25519Field.Multiply(S2, X2.x, U2);
Curve25519Field.Multiply(S2, Z1.x, S2);
Curve25519Field.Multiply(S2, Y2.x, S2);
}
bool Z2IsOne = Z2.IsOne;
uint[] U1, S1;
if (Z2IsOne)
{
U1 = X1.x;
S1 = Y1.x;
}
else
{
S1 = t4;
Curve25519Field.Square(Z2.x, S1);
U1 = tt1;
Curve25519Field.Multiply(S1, X1.x, U1);
Curve25519Field.Multiply(S1, Z2.x, S1);
Curve25519Field.Multiply(S1, Y1.x, S1);
}
uint[] H = Nat256.Create();
Curve25519Field.Subtract(U1, U2, H);
uint[] R = t2;
Curve25519Field.Subtract(S1, S2, R);
// Check if b == this or b == -this
if (Nat256.IsZero(H))
{
if (Nat256.IsZero(R))
{
// this == b, i.e. this must be doubled
return this.Twice();
}
// this == -b, i.e. the result is the point at infinity
return curve.Infinity;
}
uint[] HSquared = Nat256.Create();
Curve25519Field.Square(H, HSquared);
uint[] G = Nat256.Create();
Curve25519Field.Multiply(HSquared, H, G);
uint[] V = t3;
Curve25519Field.Multiply(HSquared, U1, V);
Curve25519Field.Negate(G, G);
Nat256.Mul(S1, G, tt1);
c = Nat256.AddBothTo(V, V, G);
Curve25519Field.Reduce27(c, G);
Curve25519FieldElement X3 = new Curve25519FieldElement(t4);
Curve25519Field.Square(R, X3.x);
Curve25519Field.Subtract(X3.x, G, X3.x);
Curve25519FieldElement Y3 = new Curve25519FieldElement(G);
Curve25519Field.Subtract(V, X3.x, Y3.x);
Curve25519Field.MultiplyAddToExt(Y3.x, R, tt1);
Curve25519Field.Reduce(tt1, Y3.x);
Curve25519FieldElement Z3 = new Curve25519FieldElement(H);
if (!Z1IsOne)
{
Curve25519Field.Multiply(Z3.x, Z1.x, Z3.x);
}
if (!Z2IsOne)
{
Curve25519Field.Multiply(Z3.x, Z2.x, Z3.x);
}
uint[] Z3Squared = (Z1IsOne && Z2IsOne) ? HSquared : null;
// TODO If the result will only be used in a subsequent addition, we don't need W3
Curve25519FieldElement W3 = CalculateJacobianModifiedW((Curve25519FieldElement)Z3, Z3Squared);
ECFieldElement[] zs = new ECFieldElement[] { Z3, W3 };
return new Curve25519Point(curve, X3, Y3, zs, IsCompressed);
}
示例12: Curve25519Point
/**
* Create a point which encodes with point compression.
*
* @param curve the curve to use
* @param x affine x co-ordinate
* @param y affine y co-ordinate
*
* @deprecated Use ECCurve.CreatePoint to construct points
*/
public Curve25519Point(ECCurve curve, ECFieldElement x, ECFieldElement y)
: this(curve, x, y, false)
{
}
示例13: SecP256K1Point
public SecP256K1Point(ECCurve curve, ECFieldElement x, ECFieldElement y, ECFieldElement[] zs,
bool withCompression)
: base(curve, x, y, zs, withCompression)
{
}
示例14: Multiply
public override ECFieldElement Multiply(ECFieldElement b)
{
uint[] z = Nat256.Create();
SecP256K1Field.Multiply(x, ((SecP256K1FieldElement)b).x, z);
return new SecP256K1FieldElement(z);
}
示例15: Subtract
public override ECFieldElement Subtract(ECFieldElement b)
{
uint[] z = Nat256.Create();
SecP256K1Field.Subtract(x, ((SecP256K1FieldElement)b).x, z);
return new SecP256K1FieldElement(z);
}