本文整理汇总了C#中DoubleValue类的典型用法代码示例。如果您正苦于以下问题:C# DoubleValue类的具体用法?C# DoubleValue怎么用?C# DoubleValue使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
DoubleValue类属于命名空间,在下文中一共展示了DoubleValue类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: Apply
/// <summary>
/// Performs the some positions bitflip mutation on a binary vector.
/// </summary>
/// <param name="random">The random number generator to use.</param>
/// <param name="vector">The vector that should be manipulated.</param>
/// <param name="pm">The probability a bit is flipped.</param>
public static void Apply(IRandom random, BinaryVector vector, DoubleValue pm) {
for (int i = 0; i < vector.Length; i++) {
if (random.NextDouble() < pm.Value) {
vector[i] = !vector[i];
}
}
}
示例2: PolynomialAllPositionManipulatorApplyTest
public void PolynomialAllPositionManipulatorApplyTest() {
TestRandom random = new TestRandom();
RealVector parent, expected;
DoubleValue contiguity, maxManipulation;
bool exceptionFired;
// The following test is not based on published examples
random.Reset();
random.DoubleNumbers = new double[] { 0.2, 0.7, 0.8, 0.01, 0.1 };
parent = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
expected = new RealVector(new double[] { 0.120213215256006, 0.249415354697564, 0.379786784743994, 0.322759240811056, -0.0182075293954083 });
contiguity = new DoubleValue(0.8);
maxManipulation = new DoubleValue(0.2);
PolynomialAllPositionManipulator.Apply(random, parent, contiguity, maxManipulation);
Assert.IsTrue(Auxiliary.RealVectorIsAlmostEqualByPosition(expected, parent));
// The following test is not based on published examples
exceptionFired = false;
random.Reset();
random.DoubleNumbers = new double[] { 0.2, 0.7, 0.8, 0.01, 0.1 };
parent = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
contiguity = new DoubleValue(-1); //Contiguity value < 0
maxManipulation = new DoubleValue(0.2);
try {
PolynomialAllPositionManipulator.Apply(random, parent, contiguity, maxManipulation);
} catch (System.ArgumentException) {
exceptionFired = true;
}
Assert.IsTrue(exceptionFired);
}
示例3: Apply
/// <summary>
/// Performs a breeder genetic algorithm manipulation on the given <paramref name="vector"/>.
/// </summary>
/// <param name="random">A random number generator.</param>
/// <param name="vector">The real vector to manipulate.</param>
/// <param name="bounds">The lower and upper bound (1st and 2nd column) of the positions in the vector. If there are less rows than dimensions, the rows are cycled.</param>
/// <param name="searchIntervalFactor">The factor determining the size of the search interval.</param>
public static void Apply(IRandom random, RealVector vector, DoubleMatrix bounds, DoubleValue searchIntervalFactor) {
int length = vector.Length;
double prob, value;
do {
value = Sigma(random);
} while (value == 0);
prob = 1.0 / (double)length;
bool wasMutated = false;
for (int i = 0; i < length; i++) {
if (random.NextDouble() < prob) {
double range = bounds[i % bounds.Rows, 1] - bounds[i % bounds.Rows, 0];
if (random.NextDouble() < 0.5) {
vector[i] = vector[i] + value * searchIntervalFactor.Value * range;
} else {
vector[i] = vector[i] - value * searchIntervalFactor.Value * range;
}
wasMutated = true;
}
}
// make sure at least one gene was mutated
if (!wasMutated) {
int pos = random.Next(length);
double range = bounds[pos % bounds.Rows, 1] - bounds[pos % bounds.Rows, 0];
if (random.NextDouble() < 0.5) {
vector[pos] = vector[pos] + value * searchIntervalFactor.Value * range;
} else {
vector[pos] = vector[pos] - value * searchIntervalFactor.Value * range;
}
}
}
示例4: Apply
public override IOperation Apply() {
bool maximization = MaximizationParameter.ActualValue.Value;
double quality = QualityParameter.ActualValue.Value, max = MaximumQualityParameter.ActualValue.Value, min = MinimumQualityParameter.ActualValue.Value;
double difference;
difference = ((quality - min) / (max - min));
if (maximization) difference = 1.0 - difference;
DoubleValue differenceValue = ScaledDifferenceParameter.ActualValue;
if (differenceValue == null) {
differenceValue = new DoubleValue(difference);
ScaledDifferenceParameter.ActualValue = differenceValue;
} else differenceValue.Value = difference;
ResultCollection results = ResultsParameter.ActualValue;
if (results != null) {
IResult r;
if (!results.TryGetValue(ScaledDifferenceParameter.TranslatedName, out r)) {
r = new Result(ScaledDifferenceParameter.TranslatedName, differenceValue);
results.Add(r);
}
}
return base.Apply();
}
示例5: PolynomialOnePositionManipulatorApplyTest
public void PolynomialOnePositionManipulatorApplyTest() {
TestRandom random = new TestRandom();
RealVector parent, expected;
DoubleValue contiguity, maxManipulation;
bool exceptionFired;
// The following test is not based on published examples
random.Reset();
random.IntNumbers = new int[] { 3 };
random.DoubleNumbers = new double[] { 0.2 };
parent = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
expected = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.1261980542102, 0.1 });
contiguity = new DoubleValue(0.2);
maxManipulation = new DoubleValue(0.7);
PolynomialOnePositionManipulator.Apply(random, parent, contiguity, maxManipulation);
Assert.IsTrue(Auxiliary.RealVectorIsAlmostEqualByPosition(expected, parent));
// The following test is not based on published examples
exceptionFired = false;
random.Reset();
random.IntNumbers = new int[] { 3 };
random.DoubleNumbers = new double[] { 0.2 };
parent = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
contiguity = new DoubleValue(-1); //Contiguity value < 0
maxManipulation = new DoubleValue(0.2);
try {
PolynomialOnePositionManipulator.Apply(random, parent, contiguity, maxManipulation);
} catch (System.ArgumentException) {
exceptionFired = true;
}
Assert.IsTrue(exceptionFired);
}
示例6: ConvertToZeroOneScaleZeroTest
public void ConvertToZeroOneScaleZeroTest()
{
DoubleValue value1 = new DoubleValue(50);
DoubleValue value2 = new DoubleValue(0);
var convertToZeroOneScale = value1.ConvertToZeroOneScale(value2);
Assert.AreEqual(0.0, convertToZeroOneScale);
}
示例7: MichalewiczNonUniformAllPositionsManipulatorApplyTest
public void MichalewiczNonUniformAllPositionsManipulatorApplyTest() {
TestRandom random = new TestRandom();
RealVector parent, expected;
DoubleValue generationsDependency;
DoubleMatrix bounds;
IntValue currentGeneration, maximumGenerations;
bool exceptionFired;
// The following test is not based on published examples
random.Reset();
random.DoubleNumbers = new double[] { 0.2, 0.5, 0.7, 0.8, 0.9, 0.5, 0.2, 0.5, 0.7, 0.8 };
parent = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
expected = new RealVector(new double[] { 0.45, 0.22, 0.3, 0.6, 0.14 });
bounds = new DoubleMatrix(new double[,] { { 0.3, 0.7 } });
generationsDependency = new DoubleValue(0.1);
currentGeneration = new IntValue(1);
maximumGenerations = new IntValue(4);
MichalewiczNonUniformAllPositionsManipulator.Apply(random, parent, bounds, currentGeneration, maximumGenerations, generationsDependency);
Assert.IsTrue(Auxiliary.RealVectorIsAlmostEqualByPosition(expected, parent));
// The following test is not based on published examples
exceptionFired = false;
random.Reset();
random.DoubleNumbers = new double[] { 0.2, 0.5, 0.7, 0.8, 0.9, 0.5, 0.2, 0.5, 0.7, 0.8 };
parent = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
bounds = new DoubleMatrix(new double[,] { { 0.3, 0.7 } });
generationsDependency = new DoubleValue(0.1);
currentGeneration = new IntValue(5); //current generation > max generation
maximumGenerations = new IntValue(4);
try {
MichalewiczNonUniformAllPositionsManipulator.Apply(random, parent, bounds, currentGeneration, maximumGenerations, generationsDependency);
} catch (System.ArgumentException) {
exceptionFired = true;
}
Assert.IsTrue(exceptionFired);
}
示例8: Apply
/// <summary>
/// Performs the rounded blend alpha crossover (BLX-a) of two integer vectors.<br/>
/// It creates new offspring by sampling a new value in the range [min_i - d * alpha, max_i + d * alpha) at each position i
/// and rounding the result to the next integer.
/// Here min_i and max_i are the smaller and larger value of the two parents at position i and d is max_i - min_i.
/// </summary>
/// <exception cref="ArgumentException">
/// Thrown when <paramref name="parent1"/> and <paramref name="parent2"/> are of different length or<br/>
/// when <paramref name="alpha"/> is less than 0.
/// </exception>
/// <param name="random">The random number generator.</param>
/// <param name="parent1">The first parent for the crossover operation.</param>
/// <param name="parent2">The second parent for the crossover operation.</param>
/// <param name="bounds">The bounds and step size for each dimension (will be cycled in case there are less rows than elements in the parent vectors).</param>
/// <param name="alpha">The alpha value for the crossover.</param>
/// <returns>The newly created integer vector resulting from the crossover operation.</returns>
public static IntegerVector Apply(IRandom random, IntegerVector parent1, IntegerVector parent2, IntMatrix bounds, DoubleValue alpha) {
if (parent1.Length != parent2.Length) throw new ArgumentException("RoundedBlendAlphaCrossover: The parents' vectors are of different length.", "parent1");
if (alpha.Value < 0) throw new ArgumentException("RoundedBlendAlphaCrossover: Paramter alpha must be greater or equal than 0.", "alpha");
if (bounds == null || bounds.Rows < 1 || bounds.Columns < 2) throw new ArgumentException("RoundedBlendAlphaCrossover: Invalid bounds specified.", "bounds");
int length = parent1.Length;
var result = new IntegerVector(length);
double max = 0, min = 0, d = 0, resMin = 0, resMax = 0;
int minBound, maxBound, step = 1;
for (int i = 0; i < length; i++) {
minBound = bounds[i % bounds.Rows, 0];
maxBound = bounds[i % bounds.Rows, 1];
if (bounds.Columns > 2) step = bounds[i % bounds.Rows, 2];
maxBound = FloorFeasible(minBound, maxBound, step, maxBound - 1);
max = Math.Max(parent1[i], parent2[i]);
min = Math.Min(parent1[i], parent2[i]);
d = Math.Abs(max - min);
resMin = FloorFeasible(minBound, maxBound, step, min - d * alpha.Value);
resMax = CeilingFeasible(minBound, maxBound, step, max + d * alpha.Value);
result[i] = RoundFeasible(minBound, maxBound, step, resMin + random.NextDouble() * Math.Abs(resMax - resMin));
}
return result;
}
示例9: VRPSolution
public VRPSolution(IVRPProblemInstance problemInstance, IVRPEncoding solution, DoubleValue quality)
: base() {
this.problemInstance = problemInstance;
this.solution = solution;
this.quality = quality;
Initialize();
}
示例10: SamplingCriteriaContext
public SamplingCriteriaContext(UintValue maxTopStackOccurrence, DoubleValue maxDuration)
{
Contract.Requires(maxTopStackOccurrence != null);
Contract.Requires(maxDuration != null);
_maxTopStackOccurrence = maxTopStackOccurrence;
_maxDuration = maxDuration;
_availableCriteria = new Criterion[]{TopStackOccurrenceCriterion, DurationCriterion};
}
示例11: SetUp
public void SetUp()
{
_enterCount = new UintValue(1);
_wallClockDurationHns = new Uint64Value(2);
_activeTime = new DoubleValue(3);
Mock<IEnumerable<Method>> mockCallingMethods = new Mock<IEnumerable<Method>>(MockBehavior.Strict);
Mock<IEnumerable<Method>> mockCalledMethods = new Mock<IEnumerable<Method>>(MockBehavior.Strict);
_method = new TracingMethod(1,"stub", 20, 50, "MethodFull", @"C:\code\source.cs",_enterCount,_wallClockDurationHns,_activeTime );//, mockCallingMethods.Object,
//mockCalledMethods.Object);
}
示例12: Apply
/// <summary>
/// Performs the arithmetic crossover on all positions by calculating x = alpha * p1 + (1 - alpha) * p2.
/// </summary>
/// <exception cref="ArgumentException">Thrown when the parent vectors are of different length or alpha is outside the range [0;1].</exception>
/// <param name="random">The random number generator.</param>
/// <param name="parent1">The first parent vector.</param>
/// <param name="parent2">The second parent vector.</param>
/// <param name="alpha">The alpha parameter (<see cref="AlphaParameter"/>).</param>
/// <returns>The vector resulting from the crossover.</returns>
public static RealVector Apply(IRandom random, RealVector parent1, RealVector parent2, DoubleValue alpha) {
int length = parent1.Length;
if (length != parent2.Length) throw new ArgumentException("UniformAllPositionsArithmeticCrossover: The parent vectors are of different length.", "parent1");
if (alpha.Value < 0 || alpha.Value > 1) throw new ArgumentException("UniformAllPositionsArithmeticCrossover: Parameter alpha must be in the range [0;1]", "alpha");
RealVector result = new RealVector(length);
for (int i = 0; i < length; i++) {
result[i] = alpha.Value * parent1[i] + (1 - alpha.Value) * parent2[i];
}
return result;
}
示例13: TracingCriteriaContext
public TracingCriteriaContext(UintValue maxCallCount, Uint64Value maxTimeWallClock, DoubleValue maxTimeActive)
{
Contract.Requires(maxCallCount != null);
Contract.Requires(maxTimeWallClock != null);
Contract.Requires(maxTimeActive != null);
_maxCallCount = maxCallCount;
_maxTimeWallClock = maxTimeWallClock;
_maxTimeWallClock = maxTimeWallClock;
_maxTimeActive = maxTimeActive;
_availableCriteria = new Criterion[] { CallCountCriterion, TimeWallClockCriterion, TimeActiveCriterion };
}
示例14: BlendAlphaCrossoverApplyTest
public void BlendAlphaCrossoverApplyTest() {
TestRandom random = new TestRandom();
RealVector parent1, parent2, expected, actual;
DoubleValue alpha;
bool exceptionFired;
// The following test is not based on published examples
random.Reset();
random.DoubleNumbers = new double[] { 0.5, 0.5, 0.5, 0.5, 0.5 };
alpha = new DoubleValue(0.5);
parent1 = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
parent2 = new RealVector(new double[] { 0.4, 0.1, 0.3, 0.2, 0.8 });
expected = new RealVector(new double[] { 0.3, 0.15, 0.3, 0.35, 0.45 });
actual = BlendAlphaCrossover.Apply(random, parent1, parent2, alpha);
Assert.IsTrue(Auxiliary.RealVectorIsAlmostEqualByPosition(actual, expected));
// The following test is not based on published examples
random.Reset();
random.DoubleNumbers = new double[] { 0.25, 0.75, 0.25, 0.75, 0.25 };
alpha = new DoubleValue(0.25);
parent1 = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
parent2 = new RealVector(new double[] { 0.4, 0.1, 0.3, 0.2, 0.8 });
expected = new RealVector(new double[] { 0.225, 0.1875, 0.3, 0.4625, 0.1875 });
actual = BlendAlphaCrossover.Apply(random, parent1, parent2, alpha);
Assert.IsTrue(Auxiliary.RealVectorIsAlmostEqualByPosition(actual, expected));
// The following test is not based on published examples
random.Reset();
random.DoubleNumbers = new double[] { 0.25, 0.75, 0.25, 0.75, 0.25 };
alpha = new DoubleValue(-0.25); // negative values for alpha are not allowed
parent1 = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1 });
parent2 = new RealVector(new double[] { 0.4, 0.1, 0.3, 0.2, 0.8 });
expected = new RealVector(new double[] { 0.225, 0.1875, 0.3, 0.4625, 0.1875 });
exceptionFired = false;
try {
actual = BlendAlphaCrossover.Apply(random, parent1, parent2, alpha);
}
catch (System.ArgumentException) {
exceptionFired = true;
}
Assert.IsTrue(exceptionFired);
// The following test is not based on published examples
random.Reset();
random.DoubleNumbers = new double[] { 0.25, 0.75, 0.25, 0.75, 0.25, .75 };
alpha = new DoubleValue(0.25);
parent1 = new RealVector(new double[] { 0.2, 0.2, 0.3, 0.5, 0.1, 0.9 }); // this parent is longer
parent2 = new RealVector(new double[] { 0.4, 0.1, 0.3, 0.2, 0.8 });
expected = new RealVector(new double[] { 0.225, 0.1875, 0.3, 0.4625, 0.1875 });
exceptionFired = false;
try {
actual = BlendAlphaCrossover.Apply(random, parent1, parent2, alpha);
}
catch (System.ArgumentException) {
exceptionFired = true;
}
Assert.IsTrue(exceptionFired);
}
示例15: Apply
public override IOperation Apply() {
if (Cache == null)
return base.Apply();
if (Quality == null) Quality = new DoubleValue(0);
Quality.Value = Cache.GetValue(BuildSolutionMessage(), m => EvaluateOnNextAvailableClient(m).Quality);
if (Successor != null)
return ExecutionContext.CreateOperation(Successor);
else
return null;
}