当前位置: 首页>>代码示例>>C#>>正文


C# DenseMatrix.At方法代码示例

本文整理汇总了C#中DenseMatrix.At方法的典型用法代码示例。如果您正苦于以下问题:C# DenseMatrix.At方法的具体用法?C# DenseMatrix.At怎么用?C# DenseMatrix.At使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在DenseMatrix的用法示例。


在下文中一共展示了DenseMatrix.At方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: DenseEvd

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public DenseEvd(DenseMatrix matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matrices for eigenvalues and eigenvectors
            MatrixEv = DenseMatrix.Identity(order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new DenseVector(order);

            IsSymmetric = true;

            for (var i = 0; IsSymmetric && i < order; i++)
            {
                for (var j = 0; IsSymmetric && j < order; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            Control.LinearAlgebraProvider.EigenDecomp(IsSymmetric, order, matrix.Values, ((DenseMatrix) MatrixEv).Values,
                ((DenseVector) VectorEv).Values, ((DenseMatrix) MatrixD).Values);
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:39,代码来源:DenseEvd.cs

示例2: DenseEvd

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public DenseEvd(DenseMatrix matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = DenseMatrix.Identity(order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new DenseVector(order);
           
            IsSymmetric = true;

            for (var i = 0; i < order & IsSymmetric; i++)
            {
                for (var j = 0; j < order & IsSymmetric; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            if (IsSymmetric)
            {
                var matrixCopy = matrix.ToArray();
                var tau = new Complex[order];
                var d = new double[order];
                var e = new double[order];

                SymmetricTridiagonalize(matrixCopy, d, e, tau, order);
                SymmetricDiagonalize(((DenseMatrix)MatrixEv).Values, d, e, order);
                SymmetricUntridiagonalize(((DenseMatrix)MatrixEv).Values, matrixCopy, tau, order);

                for (var i = 0; i < order; i++)
                {
                    VectorEv[i] = new Complex(d[i], e[i]);
                }
            }
            else
            {
                var matrixH = matrix.ToArray();
                NonsymmetricReduceToHessenberg(((DenseMatrix)MatrixEv).Values, matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(((DenseVector)VectorEv).Values, ((DenseMatrix)MatrixEv).Values, matrixH, order);
            }

            MatrixD.SetDiagonal(VectorEv);
        }
开发者ID:hrapa,项目名称:mathnet-numerics,代码行数:61,代码来源:DenseEvd.cs

示例3: DenseEvd

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public DenseEvd(DenseMatrix matrix)
        {
            if (matrix == null)
            {
                throw new ArgumentNullException("matrix");
            }

            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matricies for eigenvalues and eigenvectors
            MatrixEv = matrix.CreateMatrix(order, order);
            MatrixD = matrix.CreateMatrix(order, order);
            VectorEv = new LinearAlgebra.Complex.DenseVector(order);
           
            IsSymmetric = true;

            for (var i = 0; i < order & IsSymmetric; i++)
            {
                for (var j = 0; j < order & IsSymmetric; j++)
                {
                    IsSymmetric &= matrix.At(i, j) == matrix.At(j, i);
                }
            }

            var d = new float[order];
            var e = new float[order];

            if (IsSymmetric)
            {
                matrix.CopyTo(MatrixEv);
                d = MatrixEv.Row(order - 1).ToArray();

                SymmetricTridiagonalize(((DenseMatrix)MatrixEv).Values, d, e, order);
                SymmetricDiagonalize(((DenseMatrix)MatrixEv).Values, d, e, order);
            }
            else
            {
                var matrixH = matrix.ToArray();

                NonsymmetricReduceToHessenberg(((DenseMatrix)MatrixEv).Values, matrixH, order);
                NonsymmetricReduceHessenberToRealSchur(((DenseMatrix)MatrixEv).Values, matrixH, d, e, order);
            }

            for (var i = 0; i < order; i++)
            {
                MatrixD.At(i, i, d[i]);

                if (e[i] > 0)
                {
                    MatrixD.At(i, i + 1, e[i]);
                }
                else if (e[i] < 0)
                {
                    MatrixD.At(i, i - 1, e[i]);
                }
            }

            for (var i = 0; i < order; i++)
            {
                VectorEv[i] = new Complex(d[i], e[i]);
            }
        }
开发者ID:hrapa,项目名称:mathnet-numerics,代码行数:74,代码来源:DenseEvd.cs

示例4: Create

        /// <summary>
        /// Initializes a new instance of the <see cref="DenseEvd"/> class. This object will compute the
        /// the eigenvalue decomposition when the constructor is called and cache it's decomposition.
        /// </summary>
        /// <param name="matrix">The matrix to factor.</param>
        /// <exception cref="ArgumentNullException">If <paramref name="matrix"/> is <c>null</c>.</exception>
        /// <exception cref="ArgumentException">If EVD algorithm failed to converge with matrix <paramref name="matrix"/>.</exception>
        public static DenseEvd Create(DenseMatrix matrix)
        {
            if (matrix.RowCount != matrix.ColumnCount)
            {
                throw new ArgumentException(Resources.ArgumentMatrixSquare);
            }

            var order = matrix.RowCount;

            // Initialize matrices for eigenvalues and eigenvectors
            var eigenVectors = DenseMatrix.Identity(order);
            var blockDiagonal = new DenseMatrix(order);
            var eigenValues = new LinearAlgebra.Complex.DenseVector(order);

            var isSymmetric = true;

            for (var i = 0; isSymmetric && i < order; i++)
            {
                for (var j = 0; isSymmetric && j < order; j++)
                {
                    isSymmetric &= matrix.At(i, j) == matrix.At(j, i).Conjugate();
                }
            }

            Control.LinearAlgebraProvider.EigenDecomp(isSymmetric, order, matrix.Values, eigenVectors.Values, eigenValues.Values, blockDiagonal.Values);

            return new DenseEvd(eigenVectors, eigenValues, blockDiagonal, isSymmetric);
        }
开发者ID:primebing,项目名称:mathnet-numerics,代码行数:35,代码来源:DenseEvd.cs

示例5: DoSample

        /// <summary>
        /// Samples the distribution.
        /// </summary>
        /// <param name="rnd">The random number generator to use.</param>
        /// <param name="nu">The nu parameter to use.</param>
        /// <param name="s">The S parameter to use.</param>
        /// <param name="chol">The cholesky decomposition to use.</param>
        /// <returns>a random number from the distribution.</returns>
        private static Matrix<double> DoSample(Random rnd, double nu, Matrix<double> s, Cholesky<double> chol)
        {
            var count = s.RowCount;

            // First generate a lower triangular matrix with Sqrt(Chi-Squares) on the diagonal
            // and normal distributed variables in the lower triangle.
            var a = new DenseMatrix(count, count);
            for (var d = 0; d < count; d++)
            {
                a.At(d, d, Math.Sqrt(Gamma.Sample(rnd, (nu - d)/2.0, 0.5)));
            }

            for (var i = 1; i < count; i++)
            {
                for (var j = 0; j < i; j++)
                {
                    a.At(i, j, Normal.Sample(rnd, 0.0, 1.0));
                }
            }

            var factor = chol.Factor;
            return factor * a * a.Transpose() * factor.Transpose();
        }
开发者ID:hickford,项目名称:mathnet-numerics-native,代码行数:31,代码来源:Wishart.cs


注:本文中的DenseMatrix.At方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。