当前位置: 首页>>代码示例>>C#>>正文


C# CudaDeviceVariable.Dispose方法代码示例

本文整理汇总了C#中CudaDeviceVariable.Dispose方法的典型用法代码示例。如果您正苦于以下问题:C# CudaDeviceVariable.Dispose方法的具体用法?C# CudaDeviceVariable.Dispose怎么用?C# CudaDeviceVariable.Dispose使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CudaDeviceVariable的用法示例。


在下文中一共展示了CudaDeviceVariable.Dispose方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。

示例1: GenerateUniformArray

        public CudaArray3D GenerateUniformArray(int width, int height, int depth)
        {
            int count = width * height * depth;

            CudaDeviceVariable<float> randomVariable = new CudaDeviceVariable<float>(count);
            CudaArray3D randomArray = new CudaArray3D(CUArrayFormat.Float, width, height, depth, CudaArray3DNumChannels.One, CUDAArray3DFlags.None);

            randomDevice.SetPseudoRandomGeneratorSeed((ulong)DateTime.Now.Ticks);
            randomDevice.GenerateUniform32(randomVariable.DevicePointer, count);

            randomArray.CopyFromDeviceToThis(randomVariable.DevicePointer, sizeof(float));

            randomVariable.Dispose();

            return randomArray;
        }
开发者ID:barograf,项目名称:VoxelTerrain,代码行数:16,代码来源:CUDANoiseCube.cs

示例2: Init

        protected override void Init()
        {
            var kernelFileName = KernelFile;
            var initKernel = Ctx.LoadKernel(kernelFileName, "generateData");
            Xopt = new CudaDeviceVariable<double>(DimensionsCount);

            var d_fopt = new CudaDeviceVariable<double>(1);

            int rseed = FunctionNumber + 10000 * InstanceNumber;

            initKernel.Run(
                DimensionsCount,
                rseed,
                FunctionNumber,
                InstanceNumber,
                Xopt.DevicePointer,
                d_fopt.DevicePointer);

            double[] fopt_arr = d_fopt;

            d_fopt.Dispose();

            Fopt = fopt_arr[0];
        }
开发者ID:trojkac,项目名称:effective_pso,代码行数:24,代码来源:SphereAlgorithm.cs

示例3: MinMax

		/// <summary>
		/// Image pixel minimum and maximum. Buffer is internally allocated and freed.
		/// </summary>
		/// <param name="min">Allocated device memory with size of at least 4 * sizeof(byte)</param>
		/// <param name="max">Allocated device memory with size of at least 4 * sizeof(byte)</param>
		public void MinMax(CudaDeviceVariable<byte> min, CudaDeviceVariable<byte> max)
		{
			int bufferSize = MinMaxGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.MinMaxNew.nppiMinMax_8u_C4R(_devPtrRoi, _pitch, _sizeRoi, min.DevicePointer, max.DevicePointer, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMinMax_8u_C4R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:15,代码来源:NPPImage_8uC4.cs

示例4: Main

        static void Main(string[] args)
        {
            int N = 275;

            float[] h_A;
            float[] h_B;
            float[] h_C;
            float[] h_C_ref;

            CudaDeviceVariable<float> d_A;
            CudaDeviceVariable<float> d_B;
            CudaDeviceVariable<float> d_C;
            float alpha = 1.0f;
            float beta = 0.0f;
            int n2 = N * N;
            int i;
            float error_norm;
            float ref_norm;
            float diff;
            CudaBlas handle;

            /* Initialize CUBLAS */
            Console.WriteLine("simpleCUBLAS test running.");

            handle = new CudaBlas();

            /* Allocate host memory for the matrices */
            h_A = new float[n2];
            h_B = new float[n2];
            //h_C = new float[n2];
            h_C_ref = new float[n2];

            Random rand = new Random(0);
            /* Fill the matrices with test data */
            for (i = 0; i < n2; i++)
            {
                h_A[i] = (float)rand.NextDouble();
                h_B[i] = (float)rand.NextDouble();
                //h_C[i] = (float)rand.NextDouble();
            }

            /* Allocate device memory for the matrices */
            d_A = new CudaDeviceVariable<float>(n2);
            d_B = new CudaDeviceVariable<float>(n2);
            d_C = new CudaDeviceVariable<float>(n2);

            /* Initialize the device matrices with the host matrices */
            d_A.CopyToDevice(h_A);
            d_B.CopyToDevice(h_B);
            //d_C.CopyToDevice(h_C);

            /* Performs operation using plain C code */
            simple_sgemm(N, alpha, h_A, h_B, beta, h_C_ref);

            /* Performs operation using cublas */
            handle.Gemm(Operation.NonTranspose, Operation.NonTranspose, N, N, N, alpha, d_A, N, d_B, N, beta, d_C, N);

            /* Allocate host memory for reading back the result from device memory */
            h_C = d_C;

            /* Check result against reference */
            error_norm = 0;
            ref_norm = 0;

            for (i = 0; i < n2; ++i)
            {
                diff = h_C_ref[i] - h_C[i];
                error_norm += diff * diff;
                ref_norm += h_C_ref[i] * h_C_ref[i];
            }

            error_norm = (float)Math.Sqrt((double)error_norm);
            ref_norm = (float)Math.Sqrt((double)ref_norm);

            if (Math.Abs(ref_norm) < 1e-7)
            {
                Console.WriteLine("!!!! reference norm is 0");
                return;
            }

            /* Memory clean up */
            d_A.Dispose();
            d_B.Dispose();
            d_C.Dispose();

            /* Shutdown */
            handle.Dispose();

            if (error_norm / ref_norm < 1e-6f)
            {
                Console.WriteLine("simpleCUBLAS test passed.");
                return;
            }
            else
            {
                Console.WriteLine("simpleCUBLAS test failed.");
                return;
            }
        }
开发者ID:kunzmi,项目名称:managedCuda,代码行数:99,代码来源:Program.cs

示例5: HistogramRangeA

		/// <summary>
		/// Histogram with bins determined by pLevels array. Buffer is internally allocated and freed. Alpha channel is ignored during the histograms computations.
		/// </summary>
		/// <param name="histogram">array that receives the computed histogram. The CudaDeviceVariable must be of size nLevels-1. Array size = 3</param>
		/// <param name="pLevels">Array in device memory containing the level sizes of the bins. The CudaDeviceVariable must be of size nLevels. Array size = 3</param>
		public void HistogramRangeA(CudaDeviceVariable<int>[] histogram, CudaDeviceVariable<int>[] pLevels)
		{
			int[] size = new int[] { histogram[0].Size, histogram[1].Size, histogram[2].Size };
			CUdeviceptr[] devPtrs = new CUdeviceptr[] { histogram[0].DevicePointer, histogram[1].DevicePointer, histogram[2].DevicePointer };
			CUdeviceptr[] devLevels = new CUdeviceptr[] { pLevels[0].DevicePointer, pLevels[1].DevicePointer, pLevels[2].DevicePointer };

			int bufferSize = HistogramRangeGetBufferSizeA(size);
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.Histogram.nppiHistogramRange_8u_AC4R(_devPtrRoi, _pitch, _sizeRoi, devPtrs, devLevels, size, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiHistogramRange_8u_AC4R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:19,代码来源:NPPImage_8uC4.cs

示例6: CrossCorrValid_NormLevelA

		/// <summary>
		/// CrossCorrValid_NormLevel. Buffer is internally allocated and freed. Not affecting Alpha.
		/// </summary>
		/// <param name="tpl">template image.</param>
		/// <param name="dst">Destination image</param>
		/// <param name="nScaleFactor">Integer Result Scaling.</param>
		public void CrossCorrValid_NormLevelA(NPPImage_8uC4 tpl, NPPImage_8uC4 dst, int nScaleFactor)
		{
			int bufferSize = ValidNormLevelScaledAGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.ImageProximity.nppiCrossCorrValid_NormLevel_8u_AC4RSfs(_devPtrRoi, _pitch, _sizeRoi, tpl.DevicePointerRoi, tpl.Pitch, tpl.SizeRoi, dst.DevicePointer, dst.Pitch, nScaleFactor, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCrossCorrValid_NormLevel_8u_AC4RSfs", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:16,代码来源:NPPImage_8uC4.cs

示例7: ADotProduct

		/// <summary>
		/// Four-channel 32-bit unsigned image DotProd. Buffer is internally allocated and freed. Ignoring alpha channel.
		/// </summary>
		/// <param name="src2">2nd source image</param>
		/// <param name="pDp">Pointer to the computed dot product of the two images. (3 * sizeof(double))</param>
		public void ADotProduct(NPPImage_32sC4 src2, CudaDeviceVariable<double> pDp)
		{
			int bufferSize = DotProdGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.DotProd.nppiDotProd_32s64f_AC4R(_devPtrRoi, _pitch, src2.DevicePointerRoi, src2.Pitch, _sizeRoi, pDp.DevicePointer, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiDotProd_32s64f_AC4R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:15,代码来源:NPPImage_32sC4.cs

示例8: CountInRangeA

		/// <summary>
		/// image CountInRange. Not affecting Alpha.
		/// </summary>
		/// <param name="pCounts">Pointer to the number of pixels that fall into the specified range. (3 * sizeof(int))</param>
		/// <param name="nLowerBound">Fixed size array of the lower bound of the specified range, one per channel.</param>
		/// <param name="nUpperBound">Fixed size array of the upper bound of the specified range, one per channel.</param>
		public void CountInRangeA(CudaDeviceVariable<int> pCounts, byte[] nLowerBound, byte[] nUpperBound)
		{
			int bufferSize = CountInRangeAGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.CountInRange.nppiCountInRange_8u_AC4R(_devPtrRoi, _pitch, _sizeRoi, pCounts.DevicePointer, nLowerBound, nUpperBound, buffer.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiCountInRange_8u_AC4R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:16,代码来源:NPPImage_8uC4.cs

示例9: MeanA

		/// <summary>
		/// image mean with 64-bit double precision result. Buffer is internally allocated and freed. Not affecting alpha.
		/// </summary>
		/// <param name="mean">Allocated device memory with size of at least 3 * sizeof(double)</param>
		public void MeanA(CudaDeviceVariable<double> mean)
		{
			int bufferSize = MeanGetBufferHostSizeA();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.MeanNew.nppiMean_8u_AC4R(_devPtrRoi, _pitch, _sizeRoi, buffer.DevicePointer, mean.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiMean_8u_AC4R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:14,代码来源:NPPImage_8uC4.cs

示例10: SaveJpeg


//.........这里部分代码省略.........
                nMCUBlocksH = Math.Max(nMCUBlocksH, oFrameHeader.aSamplingFactors[i] & 0x0f);
            }

            for (int i = 0; i < oFrameHeader.nComponents; ++i)
            {
                NppiSize oBlocks = new NppiSize();
                NppiSize oBlocksPerMCU = new NppiSize(oFrameHeader.aSamplingFactors[i] & 0x0f, oFrameHeader.aSamplingFactors[i] >> 4);

                oBlocks.width = (int)Math.Ceiling((oFrameHeader.nWidth + 7) / 8 *
                                          (float)(oBlocksPerMCU.width) / nMCUBlocksH);
                oBlocks.width = DivUp(oBlocks.width, oBlocksPerMCU.width) * oBlocksPerMCU.width;

                oBlocks.height = (int)Math.Ceiling((oFrameHeader.nHeight + 7) / 8 *
                                           (float)(oBlocksPerMCU.height) / nMCUBlocksV);
                oBlocks.height = DivUp(oBlocks.height, oBlocksPerMCU.height) * oBlocksPerMCU.height;

                // Allocate Memory
                apdDCT[i] = new NPPImage_16sC1(oBlocks.width * 64, oBlocks.height);

            }

            /***************************
            *
            *   Output
            *
            ***************************/

            // Forward DCT
            for (int i = 0; i < 3; ++i)
            {
                compression.DCTQuantFwd8x8LS(apDstImage[i], apdDCT[i], aDstSize[i], pdQuantizationTables[oFrameHeader.aQuantizationTableSelector[i]]);
            }

            // Huffman Encoding
            CudaDeviceVariable<byte> pdScan = new CudaDeviceVariable<byte>(BUFFER_SIZE);
            int nScanLength = 0;

            int nTempSize = JPEGCompression.EncodeHuffmanGetSize(aDstSize[0], 3);
            CudaDeviceVariable<byte> pJpegEncoderTemp = new CudaDeviceVariable<byte>(nTempSize);

            NppiEncodeHuffmanSpec[] apHuffmanDCTableEnc = new NppiEncodeHuffmanSpec[3];
            NppiEncodeHuffmanSpec[] apHuffmanACTableEnc = new NppiEncodeHuffmanSpec[3];

            for (int i = 0; i < 3; ++i)
            {
                apHuffmanDCTableEnc[i] = JPEGCompression.EncodeHuffmanSpecInitAlloc(aHuffmanTables[(oScanHeader.aHuffmanTablesSelector[i] >> 4)].aCodes, NppiHuffmanTableType.nppiDCTable);
                apHuffmanACTableEnc[i] = JPEGCompression.EncodeHuffmanSpecInitAlloc(aHuffmanTables[(oScanHeader.aHuffmanTablesSelector[i] & 0x0f) + 2].aCodes, NppiHuffmanTableType.nppiACTable);
            }

            JPEGCompression.EncodeHuffmanScan(apdDCT, 0, oScanHeader.nSs, oScanHeader.nSe, oScanHeader.nA >> 4, oScanHeader.nA & 0x0f, pdScan, ref nScanLength, apHuffmanDCTableEnc, apHuffmanACTableEnc, aDstSize, pJpegEncoderTemp);

            for (int i = 0; i < 3; ++i)
            {
                JPEGCompression.EncodeHuffmanSpecFree(apHuffmanDCTableEnc[i]);
                JPEGCompression.EncodeHuffmanSpecFree(apHuffmanACTableEnc[i]);
            }

            // Write JPEG to byte array, as in original sample code
            byte[] pDstOutput = new byte[BUFFER_SIZE];
            int pos = 0;

            oFrameHeader.nWidth = (ushort)oDstImageSize.width;
            oFrameHeader.nHeight = (ushort)oDstImageSize.height;

            writeMarker(0x0D8, pDstOutput, ref pos);
            writeJFIFTag(pDstOutput, ref pos);
            writeQuantizationTable(aQuantizationTables[0], pDstOutput, ref pos);
            writeQuantizationTable(aQuantizationTables[1], pDstOutput, ref pos);
            writeFrameHeader(oFrameHeader, pDstOutput, ref pos);
            writeHuffmanTable(aHuffmanTables[0], pDstOutput, ref pos);
            writeHuffmanTable(aHuffmanTables[1], pDstOutput, ref pos);
            writeHuffmanTable(aHuffmanTables[2], pDstOutput, ref pos);
            writeHuffmanTable(aHuffmanTables[3], pDstOutput, ref pos);
            writeScanHeader(oScanHeader, pDstOutput, ref pos);

            pdScan.CopyToHost(pDstOutput, 0, pos, nScanLength);

            pos += nScanLength;
            writeMarker(0x0D9, pDstOutput, ref pos);

            FileStream fs = new FileStream(aFilename, FileMode.Create, FileAccess.Write);
            fs.Write(pDstOutput, 0, pos);
            fs.Close();

            //cleanup:
            fs.Dispose();
            pJpegEncoderTemp.Dispose();
            pdScan.Dispose();
            apdDCT[2].Dispose();
            apdDCT[1].Dispose();
            apdDCT[0].Dispose();
            pdQuantizationTables[1].Dispose();
            pdQuantizationTables[0].Dispose();

            srcCr.Dispose();
            srcCb.Dispose();
            srcY.Dispose();
            src.Dispose();
            compression.Dispose();
        }
开发者ID:kunzmi,项目名称:managedCuda,代码行数:101,代码来源:JpegNPP.cs

示例11: HistogramRange

        /// <summary>
        /// Histogram with bins determined by pLevels array. Buffer is internally allocated and freed.
        /// </summary>
        /// <param name="histogram">array that receives the computed histogram. The array must be of size nLevels-1.</param>
        /// <param name="pLevels">Array in device memory containing the level sizes of the bins. The array must be of size nLevels</param>
        public void HistogramRange(CudaDeviceVariable<int> histogram, CudaDeviceVariable<int> pLevels)
        {
            int bufferSize = HistogramRangeGetBufferSize(histogram.Size);
            CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

            status = NPPNativeMethods.NPPi.Histogram.nppiHistogramRange_16u_C1R(_devPtrRoi, _pitch, _sizeRoi, histogram.DevicePointer, pLevels.DevicePointer, pLevels.Size, buffer.DevicePointer);
            Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiHistogramRange_16u_C1R", status));
            buffer.Dispose();
            NPPException.CheckNppStatus(status, this);
        }
开发者ID:kunzmi,项目名称:managedCuda,代码行数:15,代码来源:NPPImage_16uC1.cs

示例12: ResizeSqrPixelAdvanced

		/// <summary>
		/// 1 channel 8-bit unsigned image resize. This primitive matches the behavior of GraphicsMagick++.
		/// </summary>
		/// <param name="dst">Destination-Image</param>
		/// <param name="nXFactor">Factor by which x dimension is changed.</param>
		/// <param name="nYFactor">Factor by which y dimension is changed.</param>
		/// <param name="eInterpolationMode">The type of eInterpolation to perform resampling. Currently only supports NPPI_INTER_LANCZOS3_Advanced.</param>
		public void ResizeSqrPixelAdvanced(NPPImage_8uC1 dst, double nXFactor, double nYFactor, InterpolationMode eInterpolationMode)
		{
			int bufferSize = ResizeAdvancedGetBufferHostSize(dst.SizeRoi, eInterpolationMode);
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);
			NppiRect roiIn = new NppiRect(_pointRoi, _sizeRoi);
			NppiRect roiOut = new NppiRect(dst._pointRoi, dst._sizeRoi);
			status = NPPNativeMethods.NPPi.ResizeSqrPixel.nppiResizeSqrPixel_8u_C1R_Advanced(_devPtrRoi, _sizeOriginal, _pitch, roiIn, dst.DevicePointerRoi, dst.Pitch, roiOut, nXFactor, nYFactor, buffer.DevicePointer, eInterpolationMode);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiResizeSqrPixel_8u_C1R_Advanced", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:18,代码来源:NPPImage_8uC1.cs

示例13: HistogramEven

        /// <summary>
        /// Histogram with evenly distributed bins. Buffer is internally allocated and freed.
        /// </summary>
        /// <param name="histogram">Allocated device memory of size nLevels</param>
        /// <param name="nLowerLevel">Lower boundary of lowest level bin. E.g. 0 for [0..255]</param>
        /// <param name="nUpperLevel">Upper boundary of highest level bin. E.g. 256 for [0..255]</param>
        public void HistogramEven(CudaDeviceVariable<int> histogram, int nLowerLevel, int nUpperLevel)
        {
            int bufferSize = HistogramEvenGetBufferSize(histogram.Size + 1);
            CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

            status = NPPNativeMethods.NPPi.Histogram.nppiHistogramEven_16s_C1R(_devPtrRoi, _pitch, _sizeRoi, histogram.DevicePointer, histogram.Size + 1, nLowerLevel, nUpperLevel, buffer.DevicePointer);
            Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiHistogramEven_16s_C1R", status));
            buffer.Dispose();
            NPPException.CheckNppStatus(status, this);
        }
开发者ID:kunzmi,项目名称:managedCuda,代码行数:16,代码来源:NPPImage_16sC1.cs

示例14: Generate

        private void Generate(CudaKernel kernelPositionWeight, int width, int height, int depth)
        {
            int count = width * height * depth;
            int widthD = width - 1;
            int heightD = height - 1;
            int depthD = depth - 1;
            int countDecremented = widthD * heightD * depthD;

            dim3 blockDimensions = new dim3(8, 8, 8);
            dim3 gridDimensions = new dim3((int)Math.Ceiling(width / 8.0), (int)Math.Ceiling(height / 8.0), (int)Math.Ceiling(depth / 8.0));
            dim3 gridDimensionsDecremented = new dim3((int)Math.Ceiling(widthD / 8.0), (int)Math.Ceiling(heightD / 8.0), (int)Math.Ceiling(depthD / 8.0));

            CUDANoiseCube noiseCube = new CUDANoiseCube();

            CudaArray3D noiseArray = noiseCube.GenerateUniformArray(16, 16, 16);
            CudaTextureArray3D noiseTexture = new CudaTextureArray3D(kernelPositionWeight, "noiseTexture", CUAddressMode.Wrap, CUFilterMode.Linear, CUTexRefSetFlags.NormalizedCoordinates, noiseArray);

            CudaDeviceVariable<Voxel> voxelsDev = new CudaDeviceVariable<Voxel>(count);

            kernelPositionWeight.BlockDimensions = blockDimensions;
            typeof(CudaKernel).GetField("_gridDim", BindingFlags.Instance | BindingFlags.NonPublic).SetValue(kernelPositionWeight, gridDimensions);

            kernelPositionWeight.Run(voxelsDev.DevicePointer, width, height, depth);

            kernelNormalAmbient.BlockDimensions = blockDimensions;
            typeof(CudaKernel).GetField("_gridDim", BindingFlags.Instance | BindingFlags.NonPublic).SetValue(kernelNormalAmbient, gridDimensions);

            kernelNormalAmbient.Run(voxelsDev.DevicePointer, width, height, depth, container.Settings.AmbientRayWidth, container.Settings.AmbientSamplesCount);

            int nearestW = NearestPowerOfTwo(widthD);
            int nearestH = NearestPowerOfTwo(heightD);
            int nearestD = NearestPowerOfTwo(depthD);
            int nearestCount = nearestW * nearestH * nearestD;

            CudaDeviceVariable<int> trisCountDevice = new CudaDeviceVariable<int>(nearestCount);
            trisCountDevice.Memset(0);
            CudaDeviceVariable<int> offsetsDev = new CudaDeviceVariable<int>(countDecremented);

            kernelMarchingCubesCases.BlockDimensions = blockDimensions;
            typeof(CudaKernel).GetField("_gridDim", BindingFlags.Instance | BindingFlags.NonPublic).SetValue(kernelMarchingCubesCases, gridDimensionsDecremented);

            kernelMarchingCubesCases.Run(voxelsDev.DevicePointer, width, height, depth, offsetsDev.DevicePointer, trisCountDevice.DevicePointer, nearestW, nearestH, nearestD);

            CudaDeviceVariable<int> prefixSumsDev = prefixScan.PrefixSumArray(trisCountDevice, nearestCount);

            int lastTrisCount = 0;
            trisCountDevice.CopyToHost(ref lastTrisCount, (nearestCount - 1) * sizeof(int));

            int lastPrefixSum = 0;
            prefixSumsDev.CopyToHost(ref lastPrefixSum, (nearestCount - 1) * sizeof(int));

            int totalVerticesCount = (lastTrisCount + lastPrefixSum) * 3;

            if (totalVerticesCount > 0)
            {
                if (container.Geometry != null)
                    container.Geometry.Dispose();

                container.VertexCount = totalVerticesCount;

                container.Geometry = new Buffer(graphicsDevice, new BufferDescription()
                {
                    BindFlags = BindFlags.VertexBuffer,
                    CpuAccessFlags = CpuAccessFlags.None,
                    OptionFlags = ResourceOptionFlags.None,
                    SizeInBytes = Marshal.SizeOf(typeof(VoxelMeshVertex)) * totalVerticesCount,
                    Usage = ResourceUsage.Default
                });

                CudaDirectXInteropResource directResource = new CudaDirectXInteropResource(container.Geometry.ComPointer, CUGraphicsRegisterFlags.None, CudaContext.DirectXVersion.D3D11, CUGraphicsMapResourceFlags.None);
                
                kernelMarchingCubesVertices.BlockDimensions = blockDimensions;
                typeof(CudaKernel).GetField("_gridDim", BindingFlags.Instance | BindingFlags.NonPublic).SetValue(kernelMarchingCubesVertices, gridDimensionsDecremented);

                directResource.Map();
                kernelMarchingCubesVertices.Run(directResource.GetMappedPointer(), voxelsDev.DevicePointer, prefixSumsDev.DevicePointer, offsetsDev.DevicePointer, width, height, depth, nearestW, nearestH, nearestD);
                directResource.UnMap();

                directResource.Dispose();
            }
            else
            {
                container.VertexCount = 0;

                if (container.Geometry != null)
                    container.Geometry.Dispose();
            }

            noiseCube.Dispose();
            prefixSumsDev.Dispose();
            trisCountDevice.Dispose();
            offsetsDev.Dispose();
            noiseArray.Dispose();
            noiseTexture.Dispose();
            voxelsDev.Dispose();
        }
开发者ID:barograf,项目名称:VoxelTerrain,代码行数:96,代码来源:CUDAGenerator.cs

示例15: Sum

		/// <summary>
		/// image sum with 64-bit long long result. Buffer is internally allocated and freed.
		/// </summary>
		/// <param name="result">Allocated device memory with size of at least 4 * sizeof(long)</param>
		public void Sum(CudaDeviceVariable<long> result)
		{
			int bufferSize = SumLongGetBufferHostSize();
			CudaDeviceVariable<byte> buffer = new CudaDeviceVariable<byte>(bufferSize);

			status = NPPNativeMethods.NPPi.Sum.nppiSum_8u64s_C4R(_devPtrRoi, _pitch, _sizeRoi, buffer.DevicePointer, result.DevicePointer);
			Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiSum_8u64s_C4R", status));
			buffer.Dispose();
			NPPException.CheckNppStatus(status, this);
		}
开发者ID:lvaleriu,项目名称:managedCuda,代码行数:14,代码来源:NPPImage_8uC4.cs


注:本文中的CudaDeviceVariable.Dispose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。