本文整理汇总了C#中Bernoulli.GetLogProbFalse方法的典型用法代码示例。如果您正苦于以下问题:C# Bernoulli.GetLogProbFalse方法的具体用法?C# Bernoulli.GetLogProbFalse怎么用?C# Bernoulli.GetLogProbFalse使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Bernoulli
的用法示例。
在下文中一共展示了Bernoulli.GetLogProbFalse方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C#代码示例。
示例1: LogAverageFactor
/// <summary>
/// Evidence message for EP
/// </summary>
/// <param name="isPositive">Incoming message from 'isPositive'.</param>
/// <param name="x">Incoming message from 'x'.</param>
/// <returns>Logarithm of the factor's average value across the given argument distributions</returns>
/// <remarks><para>
/// The formula for the result is <c>log(sum_(isPositive,x) p(isPositive,x) factor(isPositive,x))</c>.
/// </para></remarks>
public static double LogAverageFactor(Bernoulli isPositive, Gaussian x)
{
Bernoulli to_isPositive = IsPositiveAverageConditional(x);
return isPositive.GetLogAverageOf(to_isPositive);
#if false
// Z = p(b=T) p(x > 0) + p(b=F) p(x <= 0)
// = p(b=F) + (p(b=T) - p(b=F)) p(x > 0)
if (x.IsPointMass) {
return Factor.IsPositive(x.Point) ? isPositive.GetLogProbTrue() : isPositive.GetLogProbFalse();
} else if(x.IsUniform()) {
return Bernoulli.LogProbEqual(isPositive.LogOdds,0.0);
} else {
// m/sqrt(v) = (m/v)/sqrt(1/v)
double z = x.MeanTimesPrecision / Math.Sqrt(x.Precision);
if (isPositive.IsPointMass) {
return isPositive.Point ? MMath.NormalCdfLn(z) : MMath.NormalCdfLn(-z);
} else {
return MMath.LogSumExp(isPositive.GetLogProbTrue() + MMath.NormalCdfLn(z), isPositive.GetLogProbFalse() + MMath.NormalCdfLn(-z));
}
}
#endif
}
示例2: LogOddsAverageConditional
/// <summary>
/// EP message to 'logOdds'.
/// </summary>
/// <param name="sample">Incoming message from sample.</param>
/// <param name="logOdds">Incoming message from 'logOdds'. Must be a proper distribution. If uniform, the result will be uniform.</param>
/// <returns>The outgoing EP message to the 'logOdds' argument.</returns>
/// <remarks><para>
/// The outgoing message is the moment matched Gaussian approximation to the factor.
/// </para></remarks>
public static Gaussian LogOddsAverageConditional(Bernoulli sample, [SkipIfUniform] Gaussian logOdds)
{
Gaussian toLogOddsT = LogOddsAverageConditional(true, logOdds);
double logWeightT = LogAverageFactor(true, logOdds) + sample.GetLogProbTrue();
Gaussian toLogOddsF = LogOddsAverageConditional(false, logOdds);
double logWeightF = LogAverageFactor(false, logOdds) + sample.GetLogProbFalse();
double maxWeight = Math.Max(logWeightT, logWeightF);
logWeightT -= maxWeight;
logWeightF -= maxWeight;
Gaussian result = new Gaussian();
result.SetToSum(Math.Exp(logWeightT), toLogOddsT * logOdds, Math.Exp(logWeightF), toLogOddsF * logOdds);
result /= logOdds;
return result;
}
示例3: LogAverageFactor
/// <summary>
/// Evidence message for EP.
/// </summary>
/// <param name="not">Constant value for 'not'.</param>
/// <param name="b">Incoming message from 'b'.</param>
/// <returns><c>log(int f(x) qnotf(x) dx)</c></returns>
/// <remarks><para>
/// The formula for the result is <c>log(int f(x) qnotf(x) dx)</c>
/// where <c>x = (not,b)</c>.
/// </para></remarks>
public static double LogAverageFactor(bool not, Bernoulli b)
{
return not ? b.GetLogProbFalse() : b.GetLogProbTrue();
}