本文整理汇总了C++中vixl::MacroAssembler类的典型用法代码示例。如果您正苦于以下问题:C++ MacroAssembler类的具体用法?C++ MacroAssembler怎么用?C++ MacroAssembler使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了MacroAssembler类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: emitCall
TCA emitCall(vixl::MacroAssembler& a, CppCall call) {
switch (call.kind()) {
case CppCall::Kind::Direct:
a. Mov (rHostCallReg, reinterpret_cast<intptr_t>(call.address()));
break;
case CppCall::Kind::Virtual:
a. Ldr (rHostCallReg, argReg(0)[0]);
a. Ldr (rHostCallReg, rHostCallReg[call.vtableOffset()]);
break;
case CppCall::Kind::IndirectReg:
case CppCall::Kind::IndirectVreg:
// call indirect currently not implemented. It'll be something like
// a.Br(x2a(call.getReg()))
not_implemented();
always_assert(0);
break;
case CppCall::Kind::ArrayVirt:
case CppCall::Kind::Destructor:
not_implemented();
always_assert(0);
break;
}
using namespace vixl;
auto fixupAddr = a.frontier();
a. HostCall(6);
// Note that the fixup address for a HostCall is directly *before* the
// HostCall, not after as in the native case. This is because, in simulation
// mode we look at the simulator's PC at the time the fixup is invoked, and it
// will still be pointing to the HostCall; it's not advanced past it until the
// host call returns. In the native case, by contrast, we'll be looking at
// return addresses, which point after the call.
return fixupAddr;
}
示例2: emitCallWithinTC
TCA emitCallWithinTC(vixl::MacroAssembler& a, TCA call) {
a. Mov (rHostCallReg, reinterpret_cast<intptr_t>(call));
a. Blr (rHostCallReg);
auto fixupAddr = a.frontier();
return fixupAddr;
}
示例3: emitCall
TCA emitCall(vixl::MacroAssembler& a, CppCall call) {
if (call.isDirect()) {
a. Mov (rHostCallReg, reinterpret_cast<intptr_t>(call.getAddress()));
} else if (call.isVirtual()) {
a. Ldr (rHostCallReg, argReg(0)[0]);
a. Ldr (rHostCallReg, rHostCallReg[call.getOffset()]);
} else {
// call indirect currently not implemented. It'll be somthing like
// a.Br(x2a(call.getReg()))
not_implemented();
}
using namespace vixl;
auto fixupAddr = a.frontier();
a. HostCall(6);
// Note that the fixup address for a HostCall is directly *before* the
// HostCall, not after as in the native case. This is because, in simulation
// mode we look at the simulator's PC at the time the fixup is invoked, and it
// will still be pointing to the HostCall; it's not advanced past it until the
// host call returns. In the native case, by contrast, we'll be looking at
// return addresses, which point after the call.
return fixupAddr;
}
示例4: assertx
// overall emitter
void Vgen::emit(jit::vector<Vlabel>& labels) {
// Some structures here track where we put things just for debug printing.
struct Snippet {
const IRInstruction* origin;
TcaRange range;
};
struct BlockInfo {
jit::vector<Snippet> snippets;
};
// This is under the printir tracemod because it mostly shows you IR and
// machine code, not vasm and machine code (not implemented).
bool shouldUpdateAsmInfo = !!m_asmInfo
&& Trace::moduleEnabledRelease(HPHP::Trace::printir, kCodeGenLevel);
std::vector<TransBCMapping>* bcmap = nullptr;
if (mcg->tx().isTransDBEnabled() || RuntimeOption::EvalJitUseVtuneAPI) {
bcmap = &mcg->cgFixups().m_bcMap;
}
jit::vector<jit::vector<BlockInfo>> areaToBlockInfos;
if (shouldUpdateAsmInfo) {
areaToBlockInfos.resize(areas.size());
for (auto& r : areaToBlockInfos) {
r.resize(unit.blocks.size());
}
}
for (int i = 0, n = labels.size(); i < n; ++i) {
assertx(checkBlockEnd(unit, labels[i]));
auto b = labels[i];
auto& block = unit.blocks[b];
codeBlock = &area(block.area).code;
vixl::MacroAssembler as { *codeBlock };
a = &as;
auto blockStart = a->frontier();
addrs[b] = blockStart;
{
// Compute the next block we will emit into the current area.
auto cur_start = start(labels[i]);
auto j = i + 1;
while (j < labels.size() && cur_start != start(labels[j])) {
j++;
}
next = j < labels.size() ? labels[j] : Vlabel(unit.blocks.size());
}
const IRInstruction* currentOrigin = nullptr;
auto blockInfo = shouldUpdateAsmInfo
? &areaToBlockInfos[unsigned(block.area)][b]
: nullptr;
auto start_snippet = [&](Vinstr& inst) {
if (!shouldUpdateAsmInfo) return;
blockInfo->snippets.push_back(
Snippet { inst.origin, TcaRange { codeBlock->frontier(), nullptr } }
);
};
auto finish_snippet = [&] {
if (!shouldUpdateAsmInfo) return;
if (!blockInfo->snippets.empty()) {
auto& snip = blockInfo->snippets.back();
snip.range = TcaRange { snip.range.start(), codeBlock->frontier() };
}
};
for (auto& inst : block.code) {
if (currentOrigin != inst.origin) {
finish_snippet();
start_snippet(inst);
currentOrigin = inst.origin;
}
if (bcmap && inst.origin) {
auto sk = inst.origin->marker().sk();
if (bcmap->empty() ||
bcmap->back().md5 != sk.unit()->md5() ||
bcmap->back().bcStart != sk.offset()) {
bcmap->push_back(TransBCMapping{sk.unit()->md5(), sk.offset(),
main().frontier(), cold().frontier(),
frozen().frontier()});
}
}
switch (inst.op) {
#define O(name, imms, uses, defs) \
case Vinstr::name: emit(inst.name##_); break;
VASM_OPCODES
#undef O
}
}
finish_snippet();
}
for (auto& p : jccs) {
//.........这里部分代码省略.........
示例5: emit
void Vgen::emit(const ldimmq& i) {
union {
double dval;
int64_t ival;
};
ival = i.s.q();
if (i.d.isSIMD()) {
// Assembler::fmov (which you'd think shouldn't be a macro instruction)
// will emit a ldr from a literal pool if IsImmFP64 is false. vixl's
// literal pools don't work well with our codegen pattern, so if that
// would happen, emit the raw bits into a GPR first and then move them
// unmodified into a SIMD.
if (vixl::Assembler::IsImmFP64(dval)) {
a->Fmov(D(i.d), dval);
} else if (ival == 0) { // careful: dval==0.0 is true for -0.0
// 0.0 is not encodeable as an immediate to Fmov, but this works.
a->Fmov(D(i.d), vixl::xzr);
} else {
a->Mov(rAsm, ival); // XXX avoid scratch register somehow.
a->Fmov(D(i.d), rAsm);
}
} else {
a->Mov(X(i.d), ival);
}
}
示例6: emit
void Vgen::emit(ldimml& i) {
if (i.d.isSIMD()) {
emitSimdImmInt(a, i.s.q(), i.d);
} else {
Vreg32 d = i.d;
a->Mov(W(d), i.s.l());
}
}