当前位置: 首页>>代码示例>>C++>>正文


C++ matrix_base::size1方法代码示例

本文整理汇总了C++中viennacl::matrix_base::size1方法的典型用法代码示例。如果您正苦于以下问题:C++ matrix_base::size1方法的具体用法?C++ matrix_base::size1怎么用?C++ matrix_base::size1使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在viennacl::matrix_base的用法示例。


在下文中一共展示了matrix_base::size1方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: memory_exception

    typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type
    prod_impl(const SparseMatrixType & sp_mat,
              const viennacl::matrix_base<ScalarType> & d_mat,
                    viennacl::matrix_base<ScalarType> & result)
    {
      assert( (sp_mat.size1() == result.size1()) && bool("Size check failed for compressed matrix - dense matrix product: size1(sp_mat) != size1(result)"));
      assert( (sp_mat.size2() == d_mat.size1()) && bool("Size check failed for compressed matrix - dense matrix product: size2(sp_mat) != size1(d_mat)"));

      switch (viennacl::traits::handle(sp_mat).get_active_handle_id())
      {
        case viennacl::MAIN_MEMORY:
          viennacl::linalg::host_based::prod_impl(sp_mat, d_mat, result);
          break;
#ifdef VIENNACL_WITH_OPENCL
        case viennacl::OPENCL_MEMORY:
          viennacl::linalg::opencl::prod_impl(sp_mat, d_mat, result);
          break;
#endif
#ifdef VIENNACL_WITH_CUDA
        case viennacl::CUDA_MEMORY:
          viennacl::linalg::cuda::prod_impl(sp_mat, d_mat, result);
          break;
#endif
        case viennacl::MEMORY_NOT_INITIALIZED:
          throw memory_exception("not initialised!");
        default:
          throw memory_exception("not implemented");
      }
    }
开发者ID:GnsP,项目名称:viennacl-dev,代码行数:29,代码来源:sparse_matrix_operations.hpp

示例2: nmf

    void nmf(viennacl::matrix_base<ScalarType> const & V, viennacl::matrix_base<ScalarType> & W,
        viennacl::matrix_base<ScalarType> & H, viennacl::linalg::nmf_config const & conf)
    {
      assert(V.size1() == W.size1() && V.size2() == H.size2() && bool("Dimensions of W and H don't allow for V = W * H"));
      assert(W.size2() == H.size1() && bool("Dimensions of W and H don't match, prod(W, H) impossible"));

      switch (viennacl::traits::handle(V).get_active_handle_id())
      {
        case viennacl::MAIN_MEMORY:
          viennacl::linalg::host_based::nmf(V, W, H, conf);
          break;
#ifdef VIENNACL_WITH_OPENCL
          case viennacl::OPENCL_MEMORY:
          viennacl::linalg::opencl::nmf(V,W,H,conf);
          break;
#endif

#ifdef VIENNACL_WITH_CUDA
          case viennacl::CUDA_MEMORY:
          viennacl::linalg::cuda::nmf(V,W,H,conf);
          break;
#endif

        case viennacl::MEMORY_NOT_INITIALIZED:
          throw memory_exception("not initialised!");
        default:
          throw memory_exception("not implemented");

      }

    }
开发者ID:cdeterman,项目名称:RViennaCL,代码行数:31,代码来源:nmf.hpp

示例3: memory_exception

typename viennacl::enable_if< viennacl::is_any_sparse_matrix<SparseMatrixType>::value>::type
assign_to_dense(SparseMatrixType const & A,
                viennacl::matrix_base<NumericT> & B)
{
  assert( (A.size1() == B.size1()) && bool("Size check failed for assignment to dense matrix: size1(A) != size1(B)"));
  assert( (A.size2() == B.size1()) && bool("Size check failed for assignment to dense matrix: size2(A) != size2(B)"));

  switch (viennacl::traits::handle(A).get_active_handle_id())
  {
    case viennacl::MAIN_MEMORY:
      viennacl::linalg::host_based::amg::assign_to_dense(A, B);
      break;
#ifdef VIENNACL_WITH_OPENCL
    case viennacl::OPENCL_MEMORY:
      viennacl::linalg::opencl::amg::assign_to_dense(A, B);
      break;
#endif
#ifdef VIENNACL_WITH_CUDA
    case viennacl::CUDA_MEMORY:
      viennacl::linalg::cuda::amg::assign_to_dense(A, B);
      break;
#endif
    case viennacl::MEMORY_NOT_INITIALIZED:
      throw memory_exception("not initialised!");
    default:
      throw memory_exception("not implemented");
  }
}
开发者ID:cdeterman,项目名称:RViennaCL,代码行数:28,代码来源:amg_operations.hpp

示例4: nmf

void nmf(viennacl::matrix_base<NumericT> const & V,
         viennacl::matrix_base<NumericT>       & W,
         viennacl::matrix_base<NumericT>       & H,
         viennacl::linalg::nmf_config const & conf)
{
  viennacl::hsa::context & ctx = const_cast<viennacl::hsa::context &>(viennacl::traits::hsa_context(V));

  const std::string NMF_MUL_DIV_KERNEL = "el_wise_mul_div";

  viennacl::linalg::opencl::kernels::nmf<NumericT, viennacl::hsa::context>::init(ctx);

  vcl_size_t k = W.size2();
  conf.iters_ = 0;

  if (viennacl::linalg::norm_frobenius(W) <= 0)
    W = viennacl::scalar_matrix<NumericT>(W.size1(), W.size2(), NumericT(1), ctx);

  if (viennacl::linalg::norm_frobenius(H) <= 0)
    H = viennacl::scalar_matrix<NumericT>(H.size1(), H.size2(), NumericT(1), ctx);

  viennacl::matrix_base<NumericT> wn(V.size1(), k, W.row_major(), ctx);
  viennacl::matrix_base<NumericT> wd(V.size1(), k, W.row_major(), ctx);
  viennacl::matrix_base<NumericT> wtmp(V.size1(), V.size2(), W.row_major(), ctx);

  viennacl::matrix_base<NumericT> hn(k, V.size2(), H.row_major(), ctx);
  viennacl::matrix_base<NumericT> hd(k, V.size2(), H.row_major(), ctx);
  viennacl::matrix_base<NumericT> htmp(k, k, H.row_major(), ctx);

  viennacl::matrix_base<NumericT> appr(V.size1(), V.size2(), V.row_major(), ctx);

  NumericT last_diff = 0;
  NumericT diff_init = 0;
  bool stagnation_flag = false;

  for (vcl_size_t i = 0; i < conf.max_iterations(); i++)
  {
    conf.iters_ = i + 1;
    {
      hn = viennacl::linalg::prod(trans(W), V);
      htmp = viennacl::linalg::prod(trans(W), W);
      hd = viennacl::linalg::prod(htmp, H);

      viennacl::hsa::kernel & mul_div_kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::nmf<NumericT>::program_name(), NMF_MUL_DIV_KERNEL);
      viennacl::hsa::enqueue(mul_div_kernel(H, hn, hd, cl_uint(H.internal_size1() * H.internal_size2())));
    }
    {
      wn = viennacl::linalg::prod(V, trans(H));
      wtmp = viennacl::linalg::prod(W, H);
      wd = viennacl::linalg::prod(wtmp, trans(H));

      viennacl::hsa::kernel & mul_div_kernel = ctx.get_kernel(viennacl::linalg::opencl::kernels::nmf<NumericT>::program_name(), NMF_MUL_DIV_KERNEL);

      viennacl::hsa::enqueue(mul_div_kernel(W, wn, wd, cl_uint(W.internal_size1() * W.internal_size2())));
    }

    if (i % conf.check_after_steps() == 0)  //check for convergence
    {
      appr = viennacl::linalg::prod(W, H);

      appr -= V;
      NumericT diff_val = viennacl::linalg::norm_frobenius(appr);

      if (i == 0)
        diff_init = diff_val;

      if (conf.print_relative_error())
        std::cout << diff_val / diff_init << std::endl;

      // Approximation check
      if (diff_val / diff_init < conf.tolerance())
        break;

      // Stagnation check
      if (std::fabs(diff_val - last_diff) / (diff_val * NumericT(conf.check_after_steps())) < conf.stagnation_tolerance()) //avoid situations where convergence stagnates
      {
        if (stagnation_flag)    // iteration stagnates (two iterates with no notable progress)
          break;
        else
          // record stagnation in this iteration
          stagnation_flag = true;
      } else
        // good progress in this iteration, so unset stagnation flag
        stagnation_flag = false;

      // prepare for next iterate:
      last_diff = diff_val;
    }
  }
}
开发者ID:HSAFoundation,项目名称:viennacl-dev,代码行数:89,代码来源:nmf_operations.hpp

示例5:

 static vcl_size_t size1(viennacl::matrix_base<T> const & lhs,
                         ScalarType const & /*rhs*/) { return lhs.size1(); }
开发者ID:Rombur,项目名称:viennacl-dev,代码行数:2,代码来源:matrix_size_deducer.hpp

示例6:

 static vcl_size_t size1(ScalarType const & /*lhs*/, viennacl::matrix_base<ScalarType> const & rhs) { return rhs.size1(); }
开发者ID:idgitid,项目名称:viennacl-dev,代码行数:1,代码来源:matrix_size_deducer.hpp


注:本文中的viennacl::matrix_base::size1方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。