本文整理汇总了C++中viennacl::matrix::internal_size1方法的典型用法代码示例。如果您正苦于以下问题:C++ matrix::internal_size1方法的具体用法?C++ matrix::internal_size1怎么用?C++ matrix::internal_size1使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类viennacl::matrix
的用法示例。
在下文中一共展示了matrix::internal_size1方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: init_random
void init_random(viennacl::matrix<T, F> & M)
{
std::vector<T> cM(M.internal_size());
for (std::size_t i = 0; i < M.size1(); ++i)
for (std::size_t j = 0; j < M.size2(); ++j)
cM[F::mem_index(i, j, M.internal_size1(), M.internal_size2())] = T(rand())/T(RAND_MAX);
viennacl::fast_copy(&cM[0],&cM[0] + cM.size(),M);
}
示例2: nmf
void nmf(viennacl::matrix<ScalarType> const & v,
viennacl::matrix<ScalarType> & w,
viennacl::matrix<ScalarType> & h,
std::size_t k,
ScalarType eps = 0.000001,
std::size_t max_iter = 10000,
std::size_t check_diff_every_step = 100)
{
viennacl::linalg::kernels::nmf<ScalarType, 1>::init();
w.resize(v.size1(), k);
h.resize(k, v.size2());
std::vector<ScalarType> stl_w(w.internal_size1() * w.internal_size2());
std::vector<ScalarType> stl_h(h.internal_size1() * h.internal_size2());
for (std::size_t j = 0; j < stl_w.size(); j++)
stl_w[j] = static_cast<ScalarType>(rand()) / RAND_MAX;
for (std::size_t j = 0; j < stl_h.size(); j++)
stl_h[j] = static_cast<ScalarType>(rand()) / RAND_MAX;
viennacl::matrix<ScalarType> wn(v.size1(), k);
viennacl::matrix<ScalarType> wd(v.size1(), k);
viennacl::matrix<ScalarType> wtmp(v.size1(), v.size2());
viennacl::matrix<ScalarType> hn(k, v.size2());
viennacl::matrix<ScalarType> hd(k, v.size2());
viennacl::matrix<ScalarType> htmp(k, k);
viennacl::matrix<ScalarType> appr(v.size1(), v.size2());
viennacl::vector<ScalarType> diff(v.size1() * v.size2());
viennacl::fast_copy(&stl_w[0], &stl_w[0] + stl_w.size(), w);
viennacl::fast_copy(&stl_h[0], &stl_h[0] + stl_h.size(), h);
ScalarType last_diff = 0.0f;
for (std::size_t i = 0; i < max_iter; i++)
{
{
hn = viennacl::linalg::prod(trans(w), v);
htmp = viennacl::linalg::prod(trans(w), w);
hd = viennacl::linalg::prod(htmp, h);
viennacl::ocl::kernel & mul_div_kernel = viennacl::ocl::get_kernel(viennacl::linalg::kernels::nmf<ScalarType, 1>::program_name(),
NMF_MUL_DIV_KERNEL);
viennacl::ocl::enqueue(mul_div_kernel(h, hn, hd, cl_uint(stl_h.size())));
}
{
wn = viennacl::linalg::prod(v, trans(h));
wtmp = viennacl::linalg::prod(w, h);
wd = viennacl::linalg::prod(wtmp, trans(h));
viennacl::ocl::kernel & mul_div_kernel = viennacl::ocl::get_kernel(viennacl::linalg::kernels::nmf<ScalarType, 1>::program_name(),
NMF_MUL_DIV_KERNEL);
viennacl::ocl::enqueue(mul_div_kernel(w, wn, wd, cl_uint(stl_w.size())));
}
if (i % check_diff_every_step == 0)
{
appr = viennacl::linalg::prod(w, h);
viennacl::ocl::kernel & sub_kernel = viennacl::ocl::get_kernel(viennacl::linalg::kernels::nmf<ScalarType, 1>::program_name(),
NMF_SUB_KERNEL);
//this is a cheat. i.e save difference of two matrix into vector to get norm_2
viennacl::ocl::enqueue(sub_kernel(appr, v, diff, cl_uint(v.size1() * v.size2())));
ScalarType diff_val = viennacl::linalg::norm_2(diff);
if((diff_val < eps) || (fabs(diff_val - last_diff) < eps))
{
//std::cout << "Breaked at diff - " << diff_val << "\n";
break;
}
last_diff = diff_val;
//printf("Iteration #%lu - %.5f \n", i, diff_val);
}
}
}