本文整理汇总了C++中thyra::modelevaluatorbase::InArgs::set_p方法的典型用法代码示例。如果您正苦于以下问题:C++ InArgs::set_p方法的具体用法?C++ InArgs::set_p怎么用?C++ InArgs::set_p使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类thyra::modelevaluatorbase::InArgs
的用法示例。
在下文中一共展示了InArgs::set_p方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
void
Piro::LOCASolver<Scalar>::evalModelImpl(
const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
const int l = 0; // TODO: Allow user to select parameter index
const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs = inArgs.get_p(l);
// Forward parameter values to the LOCA stepper
{
const Teuchos::RCP<const Thyra::VectorBase<Scalar> > p_inargs_or_nominal =
Teuchos::nonnull(p_inargs) ? p_inargs : this->getNominalValues().get_p(l);
const Thyra::ConstDetachedVectorView<Scalar> p_init_values(p_inargs_or_nominal);
const Teuchos_Ordinal p_entry_count = p_init_values.subDim();
TEUCHOS_ASSERT(p_entry_count == Teuchos::as<Teuchos_Ordinal>(paramVector_.length()));
for (Teuchos_Ordinal k = 0; k < p_entry_count; ++k) {
paramVector_[k] = p_init_values[k];
}
group_->setParams(paramVector_);
}
stepper_->reset(globalData_, group_, locaStatusTests_, noxStatusTests_, piroParams_);
const LOCA::Abstract::Iterator::IteratorStatus status = stepper_->run();
if (status == LOCA::Abstract::Iterator::Finished) {
std::cerr << "Continuation Stepper Finished.\n";
} else if (status == LOCA::Abstract::Iterator::NotFinished) {
std::cerr << "Continuation Stepper did not reach final value.\n";
} else {
std::cerr << "Nonlinear solver failed to converge.\n";
outArgs.setFailed();
}
const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g());
const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final =
Teuchos::nonnull(x_outargs) ? x_outargs : Thyra::createMember(this->get_g_space(this->num_g()));
{
// Deep copy final solution from LOCA group
NOX::Thyra::Vector finalSolution(x_final);
finalSolution = group_->getX();
}
// Compute responses for the final solution
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs =
this->getModel().createInArgs();
{
modelInArgs.set_x(x_final);
modelInArgs.set_p(l, p_inargs);
}
this->evalConvergedModel(modelInArgs, outArgs);
}
}
示例2:
Thyra::ModelEvaluatorBase::InArgs<Scalar>
Piro::VelocityVerletSolver<Scalar>::getNominalValues() const
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> result = this->createInArgs();
const Thyra::ModelEvaluatorBase::InArgs<Scalar> modelNominalValues = model->getNominalValues();
for (int l = 0; l < num_p; ++l) {
result.set_p(l, modelNominalValues.get_p(l));
}
return result;
}
示例3:
Thyra::ModelEvaluatorBase::InArgs<Scalar>
DiagonalROME<Scalar>::getNominalValues() const
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> initialGuess =
this->createInArgs();
RCP<Thyra::VectorBase<Scalar> > p_init =
Thyra::createMember<Scalar>(p_space_);
Thyra::V_S( p_init.ptr(), 1.5 );
initialGuess.set_p(0, p_init);
return initialGuess;
}
示例4: sinCosModel
TEUCHOS_UNIT_TEST( Rythmos_ExplicitRKStepper, basePoint ) {
RCP<SinCosModel> model = sinCosModel(false);
{
RCP<ParameterList> pl = Teuchos::parameterList();
pl->set("Accept model parameters",true);
model->setParameterList(pl);
}
Thyra::ModelEvaluatorBase::InArgs<double> ic = model->getNominalValues();
// t_ic
double t_ic = 1.0; // not used
// x_ic
RCP<VectorBase<double> > x_ic = Thyra::createMember(*model->get_x_space());
{
Thyra::DetachedVectorView<double> x_ic_view( *x_ic );
x_ic_view[0] = 5.0;
x_ic_view[1] = 6.0;
}
// parameter 0 ic
RCP<VectorBase<double> > p_ic = Thyra::createMember(*model->get_p_space(0));
{
Thyra::DetachedVectorView<double> p_ic_view( *p_ic );
p_ic_view[0] = 2.0; // a
p_ic_view[1] = 3.0; // f
p_ic_view[2] = 4.0; // L
}
ic.set_p(0,p_ic);
ic.set_x(x_ic);
ic.set_t(t_ic);
RCP<ExplicitRKStepper<double> > stepper = explicitRKStepper<double>();
stepper->setModel(model);
stepper->setInitialCondition(ic);
stepper->setRKButcherTableau(createRKBT<double>("Forward Euler"));
double dt = 0.2;
double dt_taken;
dt_taken = stepper->takeStep(dt,STEP_TYPE_FIXED);
TEST_EQUALITY_CONST( dt_taken, 0.2 );
const StepStatus<double> status = stepper->getStepStatus();
TEST_ASSERT( !is_null(status.solution) );
double tol = 1.0e-10;
{
Thyra::ConstDetachedVectorView<double> x_new_view( *(status.solution) );
TEST_FLOATING_EQUALITY( x_new_view[0], 5.0 + 0.2*(6.0), tol );
TEST_FLOATING_EQUALITY( x_new_view[1], 6.0 + 0.2*( (3.0/4.0)*(3.0/4.0)*(2.0-5.0) ), tol );
}
}
示例5: tab
void Piro::RythmosSolver<Scalar>::evalModelImpl(
#endif
const Thyra::ModelEvaluatorBase::InArgs<Scalar>& inArgs,
const Thyra::ModelEvaluatorBase::OutArgs<Scalar>& outArgs) const
{
using Teuchos::RCP;
using Teuchos::rcp;
// TODO: Support more than 1 parameter and 1 response
const int j = 0;
const int l = 0;
// Parse InArgs
RCP<const Thyra::VectorBase<Scalar> > p_in;
if (num_p > 0) {
p_in = inArgs.get_p(l);
}
RCP<const Thyra::VectorBase<Scalar> > p_in2; //JF add for multipoint
if (num_p > 1) {
p_in2 = inArgs.get_p(l+1);
}
// Parse OutArgs
RCP<Thyra::VectorBase<Scalar> > g_out;
if (num_g > 0) {
g_out = outArgs.get_g(j);
}
const RCP<Thyra::VectorBase<Scalar> > gx_out = outArgs.get_g(num_g);
Thyra::ModelEvaluatorBase::InArgs<Scalar> state_ic = model->getNominalValues();
// Set initial time in ME if needed
if(t_initial > 0.0 && state_ic.supports(Thyra::ModelEvaluatorBase::IN_ARG_t))
state_ic.set_t(t_initial);
if (Teuchos::nonnull(initialConditionModel)) {
// The initial condition depends on the parameter
// It is found by querying the auxiliary model evaluator as the last response
const RCP<Thyra::VectorBase<Scalar> > initialState =
Thyra::createMember(model->get_x_space());
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> initCondInArgs = initialConditionModel->createInArgs();
if (num_p > 0) {
initCondInArgs.set_p(l, inArgs.get_p(l));
}
Thyra::ModelEvaluatorBase::OutArgs<Scalar> initCondOutArgs = initialConditionModel->createOutArgs();
initCondOutArgs.set_g(initCondOutArgs.Ng() - 1, initialState);
initialConditionModel->evalModel(initCondInArgs, initCondOutArgs);
}
state_ic.set_x(initialState);
}
// Set paramters p_in as part of initial conditions
if (num_p > 0) {
if (Teuchos::nonnull(p_in)) {
state_ic.set_p(l, p_in);
}
}
if (num_p > 1) { //JF added for multipoint
if (Teuchos::nonnull(p_in2)) {
state_ic.set_p(l+1, p_in2);
}
}
*out << "\nstate_ic:\n" << Teuchos::describe(state_ic, solnVerbLevel);
//JF may need a version of the following for multipoint, i.e. num_p>1, l+1, if we want sensitivities
RCP<Thyra::MultiVectorBase<Scalar> > dgxdp_out;
Thyra::ModelEvaluatorBase::Derivative<Scalar> dgdp_deriv_out;
if (num_p > 0) {
const Thyra::ModelEvaluatorBase::DerivativeSupport dgxdp_support =
outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, num_g, l);
if (dgxdp_support.supports(Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM)) {
const Thyra::ModelEvaluatorBase::Derivative<Scalar> dgxdp_deriv =
outArgs.get_DgDp(num_g, l);
dgxdp_out = dgxdp_deriv.getMultiVector();
}
if (num_g > 0) {
const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, j, l);
if (!dgdp_support.none()) {
dgdp_deriv_out = outArgs.get_DgDp(j, l);
}
}
}
const bool requestedSensitivities =
Teuchos::nonnull(dgxdp_out) || !dgdp_deriv_out.isEmpty();
RCP<const Thyra::VectorBase<Scalar> > finalSolution;
if (!requestedSensitivities) {
//
*out << "\nE) Solve the forward problem ...\n";
//.........这里部分代码省略.........
示例6: if
//.........这里部分代码省略.........
// The time spent
globalData_->locaUtils->out() << std::endl <<
"#### Statistics ########" << std::endl;
// Check number of steps
int numSteps = stepper_->getStepNumber();
globalData_->locaUtils->out() << std::endl <<
" Number of continuation Steps = " << numSteps << std::endl;
// Check number of failed steps
int numFailedSteps = stepper_->getNumFailedSteps();
globalData_->locaUtils->out() << std::endl <<
" Number of failed continuation Steps = " << numFailedSteps << std::endl;
globalData_->locaUtils->out() << std::endl;
// Note: the last g is used to store the final solution. It can be null - if it is just
// skip the store. If adaptation has occurred, g is not the correct size.
const Teuchos::RCP<Thyra::VectorBase<Scalar> > x_outargs = outArgs.get_g(this->num_g());
Teuchos::RCP<Thyra::VectorBase<Scalar> > x_final;
int x_args_dim = 0;
int f_sol_dim = 0;
// Pardon the nasty cast to resize the last g in outArgs - need to fit the solution
Thyra::ModelEvaluatorBase::OutArgs<Scalar>* mutable_outArgsPtr =
const_cast<Thyra::ModelEvaluatorBase::OutArgs<Scalar>* >(&outArgs);
if(Teuchos::nonnull(x_outargs)){ // g has been allocated, calculate the sizes of g and the solution
x_args_dim = x_outargs->space()->dim();
// f_sol_dim = solMgr_->getSolutionGroup()->getX().length();
f_sol_dim = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
->getSolutionGroup()->getX().length();
}
if(Teuchos::is_null(x_outargs) || (x_args_dim != f_sol_dim)){ // g is not the right size
x_final = Thyra::createMember(this->get_g_space(this->num_g()));
mutable_outArgsPtr->set_g(this->num_g(), x_final);
}
else { // g is OK, use it
x_final = x_outargs;
}
{
// Deep copy final solution from LOCA group
NOX::Thyra::Vector finalSolution(x_final);
// finalSolution = solMgr_->getSolutionGroup()->getX();
finalSolution = Teuchos::rcp_dynamic_cast< ::Thyra::LOCAAdaptiveState >(solMgr_->getState())
->getSolutionGroup()->getX();
}
// If the arrays need resizing
if(x_args_dim != f_sol_dim){
const int parameterCount = this->Np();
for (int pc = 0; pc < parameterCount; ++pc) {
const Thyra::ModelEvaluatorBase::DerivativeSupport dgdp_support =
outArgs.supports(Thyra::ModelEvaluatorBase::OUT_ARG_DgDp, this->num_g(), pc);
const Thyra::ModelEvaluatorBase::EDerivativeMultiVectorOrientation dgdp_orient =
Thyra::ModelEvaluatorBase::DERIV_MV_JACOBIAN_FORM;
if (dgdp_support.supports(dgdp_orient)) {
const Thyra::ModelEvaluatorBase::DerivativeMultiVector<Scalar> dgdp =
Thyra::create_DgDp_mv(*this, this->num_g(), pc, dgdp_orient);
mutable_outArgsPtr->set_DgDp(this->num_g(), pc, dgdp);
}
}
}
// Compute responses for the final solution
{
Thyra::ModelEvaluatorBase::InArgs<Scalar> modelInArgs =
this->getModel().createInArgs();
{
modelInArgs.set_x(x_final);
modelInArgs.set_p(l, p_inargs);
}
this->evalConvergedModel(modelInArgs, outArgs);
// Save the final solution TODO: this needs to be redone
Teuchos::RCP<Thyra::ModelEvaluatorBase::InArgs<Scalar> > fp
= Teuchos::rcp_const_cast<Thyra::ModelEvaluatorBase::InArgs<Scalar> >(finalPoint_);
Thyra::ModelEvaluatorBase::InArgsSetup<Scalar> ia;
ia.setSupports(Thyra::ModelEvaluatorBase::IN_ARG_x, true);
*fp = ia;
fp->set_x(x_final);
}
}
示例7: main
//.........这里部分代码省略.........
glSaveEigenDataStrategy = glEigenSaver;
eigenList.set("Save Eigen Data Method",
"User-Defined");
eigenList.set("User-Defined Save Eigen Data Name",
"glSaveEigenDataStrategy");
eigenList.set("glSaveEigenDataStrategy",
glSaveEigenDataStrategy);
}
#endif
// Get the solver.
std::shared_ptr<Piro::LOCASolver<double>> piroLOCASolver(
new Piro::LOCASolver<double>(
Teuchos::rcp(piroParams),
Teuchos::rcp(modelEvaluator),
Teuchos::null
//Teuchos::rcp(observer)
)
);
// // Get stepper and inject it into the eigensaver.
// std::shared_ptr<LOCA::Stepper> stepper = Teuchos::get_shared_ptr(
// piroLOCASolver->getLOCAStepperNonConst()
// );
//#ifdef HAVE_LOCA_ANASAZI
// if (computeEigenvalues)
// glEigenSaver->setLocaStepper(stepper);
//#endif
piro = piroLOCASolver;
}
#if 0
else if ( solver == "Turning Point" ) {
std::shared_ptr<Nosh::Observer> observer;
Teuchos::ParameterList & bifList =
piroParams->sublist("LOCA").sublist("Bifurcation");
// Fetch the (approximate) null state.
auto nullstateZ = mesh->getVector("null");
// Set the length normalization vector to be the initial null vector.
TEUCHOS_ASSERT(nullstateZ);
auto lengthNormVec = Teuchos::rcp(new NOX::Thyra::Vector(*nullstateZ));
//lengthNormVec->init(1.0);
bifList.set("Length Normalization Vector", lengthNormVec);
// Set the initial null vector.
auto initialNullAbstractVec =
Teuchos::rcp(new NOX::Thyra::Vector(*nullstateZ));
// initialNullAbstractVec->init(1.0);
bifList.set("Initial Null Vector", initialNullAbstractVec);
piro = std::make_shared<Piro::LOCASolver<double>>(
Teuchos::rcp(piroParams),
Teuchos::rcp(modelEvaluator),
Teuchos::null
//Teuchos::rcp(observer)
);
}
#endif
else {
TEUCHOS_TEST_FOR_EXCEPT_MSG(
true,
"Unknown solver type \"" << solver << "\"."
);
}
// ----------------------------------------------------------------------
// Now the setting of inputs and outputs.
Thyra::ModelEvaluatorBase::InArgs<double> inArgs = piro->createInArgs();
inArgs.set_p(
0,
piro->getNominalValues().get_p(0)
);
// Set output arguments to evalModel call.
Thyra::ModelEvaluatorBase::OutArgs<double> outArgs = piro->createOutArgs();
// Now solve the problem and return the responses.
const Teuchos::RCP<Teuchos::Time> piroSolveTime =
Teuchos::TimeMonitor::getNewTimer("Piro total solve time");;
{
Teuchos::TimeMonitor tm(*piroSolveTime);
piro->evalModel(inArgs, outArgs);
}
// Manually release LOCA stepper.
#ifdef HAVE_LOCA_ANASAZI
if (glEigenSaver)
glEigenSaver->releaseLocaStepper();
#endif
// Print timing data.
Teuchos::TimeMonitor::summarize();
} catch (Teuchos::CommandLineProcessor::HelpPrinted) {
} catch (Teuchos::CommandLineProcessor::ParseError) {
}
TEUCHOS_STANDARD_CATCH_STATEMENTS(true, *out, success);
return success ? EXIT_SUCCESS : EXIT_FAILURE;
}