当前位置: 首页>>代码示例>>C++>>正文


C++ RCP::FillComplete方法代码示例

本文整理汇总了C++中teuchos::RCP::FillComplete方法的典型用法代码示例。如果您正苦于以下问题:C++ RCP::FillComplete方法的具体用法?C++ RCP::FillComplete怎么用?C++ RCP::FillComplete使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在teuchos::RCP的用法示例。


在下文中一共展示了RCP::FillComplete方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: index

  Teuchos::RCP<Epetra_CrsGraph>
  sparse3Tensor2CrsGraph(
    const Stokhos::Sparse3Tensor<ordinal_type,value_type>& Cijk,
    const Epetra_BlockMap& map) 
  {
    typedef Stokhos::Sparse3Tensor<ordinal_type,value_type> Cijk_type;

    // Graph to be created
    Teuchos::RCP<Epetra_CrsGraph> graph = 
      Teuchos::rcp(new Epetra_CrsGraph(Copy, map, 0));
    
    // Loop over Cijk entries including a non-zero in the graph at
    // indices (i,j) if there is any k for which Cijk is non-zero
    for (typename Cijk_type::k_iterator k_it=Cijk.k_begin(); 
	 k_it!=Cijk.k_end(); ++k_it) {
      for (typename Cijk_type::kj_iterator j_it = Cijk.j_begin(k_it); 
	   j_it != Cijk.j_end(k_it); ++j_it) {
	ordinal_type j = index(j_it);
	for (typename Cijk_type::kji_iterator i_it = Cijk.i_begin(j_it);
	     i_it != Cijk.i_end(j_it); ++i_it) {
	  ordinal_type i = index(i_it);
	  graph->InsertGlobalIndices(i, 1, &j);
	}
      }
    }

    // Sort, remove redundencies, transform to local, ...
    graph->FillComplete();

    return graph;
  }
开发者ID:00liujj,项目名称:trilinos,代码行数:31,代码来源:Stokhos_Sparse3TensorUtilities.hpp

示例2: StencilGeometry

/// building the stencil
void PoissonSolver::StencilGeometry(Teuchos::RCP<Epetra_Vector> & RHS,
                                    Teuchos::RCP<Epetra_CrsMatrix> & A)
{
    const Epetra_BlockMap & MyMap = RHS->Map();
    int NumMyElements = MyMap.NumMyElements();
    int* MyGlobalElements = MyMap.MyGlobalElements();
    double * rhsvalues = RHS->Values();

    std::vector<double> Values(5);
    std::vector<int> Indices(5);

    const auto & inside = _bend.getInsideMask();

    for (int lid = 0; lid < NumMyElements; ++ lid) {
        size_t NumEntries = 0;

        const size_t & gid = MyGlobalElements[lid];

        cutoffStencil(Indices,
                      Values,
                      rhsvalues[lid],
                      NumEntries,
                      inside,
                      gid);
        A->InsertGlobalValues(gid, NumEntries, &Values[0], &Indices[0]);
    }

    A->FillComplete();
    A->OptimizeStorage();
}
开发者ID:kreischtauf,项目名称:CSRST,代码行数:31,代码来源:PoissonSolver.cpp

示例3: map

Teuchos::RCP<Epetra_CrsMatrix> buildMatrix(int nx, Epetra_Comm & comm)
{
   Epetra_Map map(nx*comm.NumProc(),0,comm);
   Teuchos::RCP<Epetra_CrsMatrix> mat = Teuchos::rcp(new Epetra_CrsMatrix(Copy,map,3));

   int offsets[3] = {-1, 0, 1 };
   double values[3] = { -1, 2, -1};
   int maxGid = map.MaxAllGID();
   for(int lid=0;lid<nx;lid++) {
      int gid = mat->GRID(lid);
      int numEntries = 3, offset = 0;
      int indices[3] = { gid+offsets[0],
                         gid+offsets[1],
                         gid+offsets[2] };
      if(gid==0) { // left end point
         numEntries = 2;
         offset = 1;
      }            // right end point
      else if(gid==maxGid)
         numEntries = 2;

      // insert rows
      mat->InsertGlobalValues(gid,numEntries,values+offset,indices+offset);
   }

   mat->FillComplete();
   return mat;
}
开发者ID:00liujj,项目名称:trilinos,代码行数:28,代码来源:test_belos_gcrodr.cpp

示例4: Epetra_Map

//---------------------------------------------------------------------------//
TEUCHOS_UNIT_TEST( EpetraPointJacobiPreconditioner, tridiag_matrix )
{
    typedef Epetra_RowMatrix MatrixType;
    typedef Epetra_Vector VectorType;
    typedef MCLS::VectorTraits<VectorType> VT;
    typedef MCLS::MatrixTraits<VectorType,MatrixType> MT;

    Teuchos::RCP<const Teuchos::Comm<int> > comm = 
	Teuchos::DefaultComm<int>::getComm();
    Teuchos::RCP<Epetra_Comm> epetra_comm = getEpetraComm( comm );
    int comm_size = comm->getSize();

    int local_num_rows = 10;
    int global_num_rows = local_num_rows*comm_size;
    Teuchos::RCP<Epetra_Map> map = Teuchos::rcp(
	new Epetra_Map( global_num_rows, 0, *epetra_comm ) );

    Teuchos::RCP<Epetra_CrsMatrix> A = 
	Teuchos::rcp( new Epetra_CrsMatrix( Copy, *map, 0 ) );

    Teuchos::Array<int> global_columns( 3 );
    double diag_val = 2.0;
    Teuchos::Array<double> values( 3, diag_val );
    for ( int i = 1; i < global_num_rows-1; ++i )
    {
	global_columns[0] = i-1;
	global_columns[1] = i;
	global_columns[2] = i+1;
	A->InsertGlobalValues( i, global_columns().size(), 
			       &values[0], &global_columns[0] );
    }
    Teuchos::Array<int> single_col(1,0);
    Teuchos::Array<double> diag_elem(1,diag_val);
    A->InsertGlobalValues( 0, 1, diag_elem.getRawPtr(), single_col.getRawPtr() );
    single_col[0] = global_num_rows-1;
    A->InsertGlobalValues( global_num_rows-1, 1, diag_elem.getRawPtr(), 
			   single_col.getRawPtr() );
    A->FillComplete();

    // Build the preconditioner.
    Teuchos::RCP<MCLS::Preconditioner<MatrixType> > preconditioner = 
	Teuchos::rcp( new MCLS::EpetraPointJacobiPreconditioner() );
    preconditioner->setOperator( A );
    preconditioner->buildPreconditioner();
    Teuchos::RCP<const MatrixType> M = preconditioner->getLeftPreconditioner();

    // Check the preconditioner.
    Teuchos::RCP<VectorType> X = MT::cloneVectorFromMatrixRows(*A);
    MT::getLocalDiagCopy( *M, *X );
    Teuchos::ArrayRCP<const double> X_view = VT::view( *X );
    Teuchos::ArrayRCP<const double>::const_iterator view_iterator;
    for ( view_iterator = X_view.begin();
	  view_iterator != X_view.end();
	  ++view_iterator )
    {
	TEST_EQUALITY( *view_iterator, 1.0/diag_val );
    }
}
开发者ID:sslattery,项目名称:MCLS,代码行数:59,代码来源:tstEpetraPointJacobiPreconditioner.cpp

示例5:

Teuchos::RCP<Epetra_Operator>
Albany::SolutionResponseFunction::
createGradientOp() const
{
  Teuchos::RCP<Epetra_CrsMatrix> G =
    Teuchos::rcp(new Epetra_CrsMatrix(Copy, *gradient_graph));
  G->FillComplete();
  return G;
}
开发者ID:ImmutableLtd,项目名称:Albany,代码行数:9,代码来源:Albany_SolutionResponseFunction.cpp

示例6:

Teuchos::RCP<Epetra_Operator>
twoD_diffusion_ME::
create_W() const
{
  Teuchos::RCP<Epetra_CrsMatrix> AA =
    Teuchos::rcp(new Epetra_CrsMatrix(Copy, *graph));
  AA->FillComplete();
  AA->OptimizeStorage();
  return AA;
}
开发者ID:ChiahungTai,项目名称:Trilinos,代码行数:10,代码来源:twoD_diffusion_ME.cpp

示例7: Epetra_CrsMatrix

Teuchos::RCP<Epetra_CrsMatrix>
buildH( const Teuchos::RCP<Epetra_CrsMatrix> &A)
{
    Teuchos::RCP<Epetra_CrsMatrix> H = Teuchos::rcp( 
	new Epetra_CrsMatrix(Copy, A->RowMap(), A->GlobalMaxNumEntries() ) );
    int N = A->NumGlobalRows();
    std::vector<double> A_values( N );
    std::vector<int> A_indices( N );
    int A_size = 0;
    double local_H;
    bool found_diag = false;
    for ( int i = 0; i < N; ++i )
    {
	A->ExtractGlobalRowCopy( i,
				 N, 
				 A_size, 
				 &A_values[0], 
				 &A_indices[0] );

	for ( int j = 0; j < A_size; ++j )
	{
	    if ( i == A_indices[j] )
	    {
		local_H = 1.0 - A_values[j];
		H->InsertGlobalValues( i, 1, &local_H, &A_indices[j] );
		found_diag = true;
	    }
	    else
	    {
		local_H = -A_values[j];
		H->InsertGlobalValues( i, 1, &local_H, &A_indices[j] );
	    }
	}
	if ( !found_diag )
	{
	    local_H = 1.0;
	    H->InsertGlobalValues( i, 1, &local_H, &i );
	}
    }
    H->FillComplete();
    return H;
}
开发者ID:sslattery,项目名称:HMCSA,代码行数:42,代码来源:SpecRadStudy.cpp

示例8: map

  Teuchos::RCP<Epetra_CrsGraph>
  sparse3Tensor2CrsGraph(
    const Stokhos::OrthogPolyBasis<ordinal_type,value_type>& basis,
    const Stokhos::Sparse3Tensor<ordinal_type,value_type>& Cijk,
    const Epetra_Comm& comm) 
  {
    // Number of stochastic rows
    ordinal_type num_rows = basis.size();

    // Replicated local map
    Epetra_LocalMap map(num_rows, 0, comm);

    // Graph to be created
    Teuchos::RCP<Epetra_CrsGraph> graph = 
      Teuchos::rcp(new Epetra_CrsGraph(Copy, map, 0));
    
    // Loop over Cijk entries including a non-zero in the graph at
    // indices (i,j) if there is any k for which Cijk is non-zero
    ordinal_type Cijk_size = Cijk.size();
    for (ordinal_type k=0; k<Cijk_size; k++) {
      ordinal_type nj = Cijk.num_j(k);
      const Teuchos::Array<int>& j_indices = Cijk.Jindices(k);
      for (ordinal_type jj=0; jj<nj; jj++) {
	ordinal_type j = j_indices[jj];
	const Teuchos::Array<int>& i_indices = Cijk.Iindices(k,jj);
	ordinal_type ni = i_indices.size();
	for (ordinal_type ii=0; ii<ni; ii++) {
	  ordinal_type i = i_indices[ii];
	  graph->InsertGlobalIndices(i, 1, &j);
	}
      }
    }

    // Sort, remove redundencies, transform to local, ...
    graph->FillComplete();

    return graph;
  }
开发者ID:haripandey,项目名称:trilinos,代码行数:38,代码来源:Stokhos_Sparse3TensorUtilities.hpp

示例9: X

Teuchos::RCP<Epetra_CrsMatrix> Epetra_Operator_to_Epetra_Matrix::constructInverseMatrix(const Epetra_Operator &op, const Epetra_Map &map) {
  int numEntriesPerRow = 0;
  Teuchos::RCP<Epetra_CrsMatrix> matrix = Teuchos::rcp(new Epetra_CrsMatrix(::Copy, map, numEntriesPerRow));
  
  int numRows = map.NumGlobalElements();

  Epetra_Vector X(map);
  Epetra_Vector Y(map);
  
  double tol = 1e-15; // values below this will be considered 0
  
  for (int rowIndex=0; rowIndex<numRows; rowIndex++) {
    int lid = map.LID(rowIndex);
    if (lid != -1) {
      X[lid] = 1.0;
    }
    op.ApplyInverse(X, Y);
    if (lid != -1) {
      X[lid] = 0.0;
    }
    
    std::vector<double> values;
    std::vector<int> indices;
    for (int i=0; i<map.NumMyElements(); i++) {
      if (abs(Y[i]) > tol) {
        values.push_back(Y[i]);
        indices.push_back(map.GID(i));
      }
    }
    
    matrix->InsertGlobalValues(rowIndex, values.size(), &values[0], &indices[0]);
  }
  
  matrix->FillComplete();
  return matrix;
}
开发者ID:Kun-Qu,项目名称:Camellia,代码行数:36,代码来源:Epetra_Operator_to_Epetra_Matrix.cpp

示例10: map

TEUCHOS_UNIT_TEST( OperatorTools, spectral_radius_test)
{
    int problem_size = 100;

    Epetra_SerialComm comm;
    Epetra_Map map( problem_size, 0, comm );

    // Build A.
    Teuchos::RCP<Epetra_CrsMatrix> A = 
	Teuchos::rcp( new Epetra_CrsMatrix( Copy, map, problem_size ) );
    double lower_diag = -1.0;
    double diag = 2.0;
    double upper_diag = -1.0;
    int global_row = 0;
    int lower_row = 0;
    int upper_row = 0;
    for ( int i = 0; i < problem_size; ++i )
    {
	global_row = A->GRID(i);
	lower_row = i-1;
	upper_row = i+1;
	if ( lower_row > -1 )
	{
	    A->InsertGlobalValues( global_row, 1, &lower_diag, &lower_row );
	}
	A->InsertGlobalValues( global_row, 1, &diag, &global_row );
	if ( upper_row < problem_size )
	{
	    A->InsertGlobalValues( global_row, 1, &upper_diag, &upper_row );
	}
    }
    A->FillComplete();

    double spec_rad_A = HMCSA::OperatorTools::spectralRadius( A );
    std::cout << spec_rad_A << std::endl;
}
开发者ID:sslattery,项目名称:HMCSA,代码行数:36,代码来源:tstOperatorTools.cpp

示例11: main

int main(int argc, char *argv[])
{
  int i;
  bool ierr, gerr;
  gerr = true;

#ifdef HAVE_MPI
  // Initialize MPI and setup an Epetra communicator
  MPI_Init(&argc,&argv);
  Teuchos::RCP<Epetra_MpiComm> Comm = Teuchos::rcp( new Epetra_MpiComm(MPI_COMM_WORLD) );
#else
  // If we aren't using MPI, then setup a serial communicator.
  Teuchos::RCP<Epetra_SerialComm> Comm = Teuchos::rcp( new Epetra_SerialComm() );
#endif

   // number of global elements
  int dim = 100;
  int blockSize = 5;

  bool verbose = false;
  if (argc>1) {
    if (argv[1][0]=='-' && argv[1][1]=='v') {
      verbose = true;
    }
  }

  // Construct a Map that puts approximately the same number of 
  // equations on each processor.
  Teuchos::RCP<Epetra_Map> Map = Teuchos::rcp( new Epetra_Map(dim, 0, *Comm) );
  
  // Get update list and number of local equations from newly created Map.
  int NumMyElements = Map->NumMyElements();
  std::vector<int> MyGlobalElements(NumMyElements);
  Map->MyGlobalElements(&MyGlobalElements[0]);

  // Create an integer std::vector NumNz that is used to build the Petra Matrix.
  // NumNz[i] is the Number of OFF-DIAGONAL term for the ith global equation 
  // on this processor
  std::vector<int> NumNz(NumMyElements);

  // We are building a tridiagonal matrix where each row has (-1 2 -1)
  // So we need 2 off-diagonal terms (except for the first and last equation)
  for (i=0; i<NumMyElements; i++) {
    if (MyGlobalElements[i]==0 || MyGlobalElements[i] == dim-1) {
      NumNz[i] = 2;
    }
    else {
      NumNz[i] = 3;
    }
  }

  // Create an Epetra_Matrix
  Teuchos::RCP<Epetra_CrsMatrix> A = Teuchos::rcp( new Epetra_CrsMatrix(Copy, *Map, &NumNz[0]) );
   
  // Add  rows one-at-a-time
  // Need some vectors to help
  // Off diagonal Values will always be -1
  std::vector<double> Values(2);
  Values[0] = -1.0; Values[1] = -1.0;
  std::vector<int> Indices(2);
  double two = 2.0;
  int NumEntries;
  for (i=0; i<NumMyElements; i++) {
    if (MyGlobalElements[i]==0) {
      Indices[0] = 1;
      NumEntries = 1;
    }
    else if (MyGlobalElements[i] == dim-1) {
      Indices[0] = dim-2;
      NumEntries = 1;
    }
    else {
      Indices[0] = MyGlobalElements[i]-1;
      Indices[1] = MyGlobalElements[i]+1;
      NumEntries = 2;
    }
    ierr = A->InsertGlobalValues(MyGlobalElements[i],NumEntries,&Values[0],&Indices[0]);
    assert(ierr==0);
    // Put in the diagonal entry
    ierr = A->InsertGlobalValues(MyGlobalElements[i],1,&two,&MyGlobalElements[i]);
    assert(ierr==0);
  }
   
  // Finish building the epetra matrix A
  ierr = A->FillComplete();
  assert(ierr==0);

  // Issue several useful typedefs;
  typedef Belos::MultiVec<double> EMV;
  typedef Belos::Operator<double> EOP;

  // Create an Epetra_MultiVector for an initial std::vector to start the solver.
  // Note that this needs to have the same number of columns as the blocksize.
  Teuchos::RCP<Belos::EpetraMultiVec> ivec = Teuchos::rcp( new Belos::EpetraMultiVec(*Map, blockSize) );
  ivec->Random();

  // Create an output manager to handle the I/O from the solver
  Teuchos::RCP<Belos::OutputManager<double> > MyOM = Teuchos::rcp( new Belos::OutputManager<double>() );
  if (verbose) {
    MyOM->setVerbosity( Belos::Warnings );
//.........这里部分代码省略.........
开发者ID:cakeisalie,项目名称:oomphlib_003,代码行数:101,代码来源:cxx_main.cpp

示例12: Epetra_Map

//---------------------------------------------------------------------------//
// Test templates
//---------------------------------------------------------------------------//
TEUCHOS_UNIT_TEST( SolverFactory, mcsa_two_by_two )
{
    typedef Epetra_Vector VectorType;
    typedef MCLS::VectorTraits<VectorType> VT;
    typedef Epetra_RowMatrix MatrixType;
    typedef MCLS::MatrixTraits<VectorType,MatrixType> MT;

    Teuchos::RCP<const Teuchos::Comm<int> > comm = 
	Teuchos::DefaultComm<int>::getComm();
    int comm_size = comm->getSize();
    int comm_rank = comm->getRank();

    // This is a 4 processor test.
    if ( comm_size == 4 )
    {
	// Build the set-constant communicator.
	Teuchos::Array<int> ranks(2);
	if ( comm_rank < 2 )
	{
	    ranks[0] = 0;
	    ranks[1] = 1;
	}
	else
	{
	    ranks[0] = 2;
	    ranks[1] = 3;
	}
	Teuchos::RCP<const Teuchos::Comm<int> > comm_set =
	    comm->createSubcommunicator( ranks() );
	int set_size = comm_set->getSize();

	// Declare the linear problem in the global scope.
	Teuchos::RCP<MCLS::LinearProblem<VectorType,MatrixType> > linear_problem;

	// Build the linear system on set 0.
	if ( comm_rank < 2 )
	{
	    int local_num_rows = 10;
	    int global_num_rows = local_num_rows*set_size;
	    Teuchos::RCP<Epetra_Comm> epetra_comm = getEpetraComm( comm_set );
	    Teuchos::RCP<Epetra_Map> map = Teuchos::rcp(
		new Epetra_Map( global_num_rows, 0, *epetra_comm ) );

	    // Build the linear system. This operator is symmetric with a spectral
	    // radius less than 1.
	    Teuchos::RCP<Epetra_CrsMatrix> A = 	
		Teuchos::rcp( new Epetra_CrsMatrix( Copy, *map, 0 ) );
	    Teuchos::Array<int> global_columns( 3 );
	    Teuchos::Array<double> values( 3 );
	    global_columns[0] = 0;
	    global_columns[1] = 1;
	    global_columns[2] = 2;
	    values[0] = 1.0;
	    values[1] = 0.05;
	    values[2] = 0.05;
	    A->InsertGlobalValues( 0, global_columns.size(), 
				   &values[0], &global_columns[0] );
	    for ( int i = 1; i < global_num_rows-1; ++i )
	    {
		global_columns[0] = i-1;
		global_columns[1] = i;
		global_columns[2] = i+1;
		values[0] = 0.05;
		values[1] = 1.0;
		values[2] = 0.05;
		A->InsertGlobalValues( i, global_columns.size(), 
				       &values[0], &global_columns[0] );
	    }
	    global_columns[0] = global_num_rows-3;
	    global_columns[1] = global_num_rows-2;
	    global_columns[2] = global_num_rows-1;
	    values[0] = 0.05;
	    values[1] = 0.05;
	    values[2] = 1.0;
	    A->InsertGlobalValues( global_num_rows-1, global_columns.size(), 
				   &values[0], &global_columns[0] );
	    A->FillComplete();

	    Teuchos::RCP<MatrixType> B = A;

	    // Build the LHS. Put a large positive number here to be sure we are
	    // clear the vector before solving.
	    Teuchos::RCP<VectorType> x = MT::cloneVectorFromMatrixRows( *B );
	    VT::putScalar( *x, 0.0 );

	    // Build the RHS with negative numbers. this gives us a negative
	    // solution. 
	    Teuchos::RCP<VectorType> b = MT::cloneVectorFromMatrixRows( *B );
	    VT::putScalar( *b, -1.0 );

	    // Create the linear problem.
	    linear_problem = Teuchos::rcp( 
		new MCLS::LinearProblem<VectorType,MatrixType>(B, x, b) );
	}
	comm->barrier();

	// Solver parameters.
//.........这里部分代码省略.........
开发者ID:sslattery,项目名称:MCLS,代码行数:101,代码来源:tstEpetraSolverFactory.cpp

示例13: PerformSymbolicFactorization

//=============================================================================
int Amesos_Dscpack::PerformSymbolicFactorization()
{
  ResetTimer(0);
  ResetTimer(1);

  MyPID_    = Comm().MyPID();
  NumProcs_ = Comm().NumProc();
  
  Epetra_RowMatrix *RowMatrixA = Problem_->GetMatrix();
  if (RowMatrixA == 0)
    AMESOS_CHK_ERR(-1);

  const Epetra_Map& OriginalMap = RowMatrixA->RowMatrixRowMap() ;
  const Epetra_MpiComm& comm1   = dynamic_cast<const Epetra_MpiComm &> (Comm());
  int numrows                   = RowMatrixA->NumGlobalRows();
  int numentries                = RowMatrixA->NumGlobalNonzeros();

  Teuchos::RCP<Epetra_CrsGraph> Graph;

  Epetra_CrsMatrix* CastCrsMatrixA = 
    dynamic_cast<Epetra_CrsMatrix*>(RowMatrixA); 

  if (CastCrsMatrixA)
  {
    Graph = Teuchos::rcp(const_cast<Epetra_CrsGraph*>(&(CastCrsMatrixA->Graph())), false);
  }
  else
  {
    int MaxNumEntries = RowMatrixA->MaxNumEntries();
    Graph = Teuchos::rcp(new Epetra_CrsGraph(Copy, OriginalMap, MaxNumEntries));

    std::vector<int>    Indices(MaxNumEntries);
    std::vector<double> Values(MaxNumEntries);

    for (int i = 0 ; i < RowMatrixA->NumMyRows() ; ++i)
    {
      int NumEntries;
      RowMatrixA->ExtractMyRowCopy(i, MaxNumEntries, NumEntries,
                                   &Values[0], &Indices[0]);

      for (int j = 0 ; j < NumEntries ; ++j)
        Indices[j] = RowMatrixA->RowMatrixColMap().GID(Indices[j]);

      int GlobalRow = RowMatrixA->RowMatrixRowMap().GID(i);
      Graph->InsertGlobalIndices(GlobalRow, NumEntries, &Indices[0]);
    }

    Graph->FillComplete();
  }

  //
  //  Create a replicated map and graph 
  //
  std::vector<int> AllIDs( numrows ) ; 
  for ( int i = 0; i < numrows ; i++ ) AllIDs[i] = i ; 

  Epetra_Map      ReplicatedMap( -1, numrows, &AllIDs[0], 0, Comm());
  Epetra_Import   ReplicatedImporter(ReplicatedMap, OriginalMap);
  Epetra_CrsGraph ReplicatedGraph( Copy, ReplicatedMap, 0 ); 

  AMESOS_CHK_ERR(ReplicatedGraph.Import(*Graph, ReplicatedImporter, Insert));
  AMESOS_CHK_ERR(ReplicatedGraph.FillComplete());

  //
  //  Convert the matrix to Ap, Ai
  //
  std::vector <int> Replicates(numrows);
  std::vector <int> Ap(numrows + 1);
  std::vector <int> Ai(EPETRA_MAX(numrows, numentries));

  for( int i = 0 ; i < numrows; i++ ) Replicates[i] = 1; 
  
  int NumEntriesPerRow ;
  int *ColIndices = 0 ;
  int Ai_index = 0 ; 
  for ( int MyRow = 0; MyRow <numrows; MyRow++ ) {
    AMESOS_CHK_ERR( ReplicatedGraph.ExtractMyRowView( MyRow, NumEntriesPerRow, ColIndices ) );
    Ap[MyRow] = Ai_index ; 
    for ( int j = 0; j < NumEntriesPerRow; j++ ) { 
      Ai[Ai_index] = ColIndices[j] ; 
      Ai_index++;
    }
  }
  assert( Ai_index == numentries ) ; 
  Ap[ numrows ] = Ai_index ; 
  
  MtxConvTime_ = AddTime("Total matrix conversion time", MtxConvTime_, 0);

  ResetTimer(0);

  //
  //  Call Dscpack Symbolic Factorization
  //  
  int OrderCode = 2;
  std::vector<double> MyANonZ;
  
  NumLocalNonz = 0 ; 
  GlobalStructNewColNum = 0 ; 
  GlobalStructNewNum = 0 ;  
//.........这里部分代码省略.........
开发者ID:00liujj,项目名称:trilinos,代码行数:101,代码来源:Amesos_Dscpack.cpp

示例14: probeop


//.........这里部分代码省略.........
#endif
        probeop.Apply(probevec, Scol);
#ifdef TIMING_OUTPUT
        app_time.stop();
#endif
        Scol.MaxValue(maxvalue);
        for (int k = 0; k < nvectors; k++) //TODO:Need to switch these loops
        {
            cindex = k+i;
            vecvalues = Scol[k];
            //cout << "MAX" << maxvalue << endl;
            for (j = 0 ; j < localElems ; j++)
            {
                nentries = 0; // inserting one entry in each row for now
                if (allSGID[cindex] == rows[j]) // diagonal entry
                {
                    values[nentries] = vecvalues[j];
                    indices[nentries] = allSGID[cindex];
                    nentries++;
                    Sbar->InsertGlobalValues(rows[j], nentries, values, indices);
                }
                else if (abs(vecvalues[j]/maxvalue[k]) > relative_thres)
                {
                    values[nentries] = vecvalues[j];
                    indices[nentries] = allSGID[cindex];
                    nentries++;
                    Sbar->InsertGlobalValues(rows[j], nentries, values, indices);
                }
                else
                {
                    if (vecvalues[j] != 0.0) dropped++;
                }
            }
        }
    }

    probeop.ResetTempVectors(1);

    for ( ; i < totalElems ; i++)
    {
        Epetra_MultiVector probevec(rMap, 1); // TODO: Try doing more than one
        Epetra_MultiVector Scol(rMap, 1);     // vector at a time

        probevec.PutScalar(0.0);
        if (i >= prefixSum - localElems && i < prefixSum)
        {
            probevec.ReplaceGlobalValue(allSGID[i], 0, 1.0);
        }

#ifdef TIMING_OUTPUT
        app_time.start();
#endif
        probeop.Apply(probevec, Scol);
#ifdef TIMING_OUTPUT
        app_time.stop();
#endif
        vecvalues = Scol[0];
        Scol.MaxValue(maxvalue);
        //cout << "MAX" << maxvalue << endl;
        for (j = 0 ; j < localElems ; j++)
        {
            nentries = 0; // inserting one entry in each row for now
            if (allSGID[i] == rows[j]) // diagonal entry
            {
                values[nentries] = vecvalues[j];
                indices[nentries] = allSGID[i];
                nentries++;
                Sbar->InsertGlobalValues(rows[j], nentries, values, indices);
            }
            else if (abs(vecvalues[j]/maxvalue[0]) > relative_thres)
            {
                values[nentries] = vecvalues[j];
                indices[nentries] = allSGID[i];
                nentries++;
                Sbar->InsertGlobalValues(rows[j], nentries, values, indices);
            }
            else
            {
                if (vecvalues[j] != 0.0) dropped++;
            }
        }
    }
#ifdef TIMING_OUTPUT
    ftime.stop();
    cout << "Time in finding and dropping entries" << ftime.totalElapsedTime() << endl;
    ftime.reset();
#endif
#ifdef TIMING_OUTPUT
    cout << "Time in Apply of probing" << app_time.totalElapsedTime() << endl;
#endif
    Sbar->FillComplete();
    cout << "#dropped entries" << dropped << endl;
    delete[] allSGID;
    delete[] mySGID;
    delete[] values;
    delete[] indices;
    delete[] maxvalue;

    return Sbar;
}
开发者ID:Russell-Jones-OxPhys,项目名称:Trilinos,代码行数:101,代码来源:shylu_schur.cpp

示例15: Epetra_Map

//---------------------------------------------------------------------------//
// Test templates
//---------------------------------------------------------------------------//
TEUCHOS_UNIT_TEST( FixedPointSolverManager, one_by_one )
{
    typedef Epetra_Vector VectorType;
    typedef MCLS::VectorTraits<VectorType> VT;
    typedef Epetra_RowMatrix MatrixType;
    typedef MCLS::MatrixTraits<VectorType,MatrixType> MT;

    Teuchos::RCP<const Teuchos::Comm<int> > comm = 
	Teuchos::DefaultComm<int>::getComm();
    Teuchos::RCP<Epetra_Comm> epetra_comm = getEpetraComm( comm );
    int comm_size = comm->getSize();

    int local_num_rows = 10;
    int global_num_rows = local_num_rows*comm_size;
    Teuchos::RCP<Epetra_Map> map = Teuchos::rcp(
	new Epetra_Map( global_num_rows, 0, *epetra_comm ) );

    // Build the linear system. 
    Teuchos::RCP<Epetra_CrsMatrix> A = 	
	Teuchos::rcp( new Epetra_CrsMatrix( Copy, *map, 0 ) );
    Teuchos::Array<int> global_columns( 3 );
    Teuchos::Array<double> values( 3 );
    global_columns[0] = 0;
    global_columns[1] = 1;
    global_columns[2] = 2;
    values[0] = 0.14;
    values[1] = 0.14;
    values[2] = 1.0;
    A->InsertGlobalValues( 0, global_columns.size(), 
			   &values[0], &global_columns[0] );
    for ( int i = 1; i < global_num_rows-1; ++i )
    {
	global_columns[0] = i-1;
	global_columns[1] = i;
	global_columns[2] = i+1;
	values[0] = 0.14;
	values[1] = 1.0;
	values[2] = 0.14;
	A->InsertGlobalValues( i, global_columns.size(), 
			       &values[0], &global_columns[0] );
    }
    global_columns[0] = global_num_rows-3;
    global_columns[1] = global_num_rows-2;
    global_columns[2] = global_num_rows-1;
    values[0] = 0.14;
    values[1] = 0.14;
    values[2] = 1.0;
    A->InsertGlobalValues( global_num_rows-1, global_columns.size(), 
			   &values[0], &global_columns[0] );
    A->FillComplete();

    Teuchos::RCP<MatrixType> B = A;

    // Build the LHS. Put a large positive number here to be sure we are
    // clear the vector before solving.
    Teuchos::RCP<VectorType> x = MT::cloneVectorFromMatrixRows( *B );
    VT::putScalar( *x, 0.0 );

    // Build the RHS with negative numbers. this gives us a negative
    // solution. 
    Teuchos::RCP<VectorType> b = MT::cloneVectorFromMatrixRows( *B );
    VT::putScalar( *b, -1.0 );

    // Solver parameters.
    Teuchos::RCP<Teuchos::ParameterList> plist = 
	Teuchos::rcp( new Teuchos::ParameterList() );
    plist->set<int>("Iteration Print Frequency", 1);
    plist->set<double>("Convergence Tolerance", 1.0e-8);
    plist->set<int>("Maximum Iterations", 100);
    plist->set<double>("Richardson Relaxation", 1.0);

    // Create the linear problem.
    Teuchos::RCP<MCLS::LinearProblem<VectorType,MatrixType> > linear_problem =
	Teuchos::rcp( new MCLS::LinearProblem<VectorType,MatrixType>(
			  B, x, b ) );

    // Create the solver.
    MCLS::FixedPointSolverManager<VectorType,MatrixType> 
	solver_manager( linear_problem, comm, plist );

    // Solve the problem.
    bool converged_status = solver_manager.solve();

    TEST_ASSERT( converged_status );
    TEST_ASSERT( solver_manager.getConvergedStatus() );
    TEST_EQUALITY( solver_manager.getNumIters(), 15 );
    TEST_ASSERT( solver_manager.achievedTol() > 0.0 );

    // Check that we got a negative solution.
    Teuchos::ArrayRCP<const double> x_view = VT::view(*x);
    Teuchos::ArrayRCP<const double>::const_iterator x_view_it;
    for ( x_view_it = x_view.begin(); x_view_it != x_view.end(); ++x_view_it )
    {
	TEST_ASSERT( *x_view_it < Teuchos::ScalarTraits<double>::zero() );
    }

    // Now solve the problem with a positive source.
//.........这里部分代码省略.........
开发者ID:sslattery,项目名称:MCLS,代码行数:101,代码来源:tstEpetraFixedPointSolverManager.cpp


注:本文中的teuchos::RCP::FillComplete方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。