当前位置: 首页>>代码示例>>C++>>正文


C++ std::vector类代码示例

本文整理汇总了C++中std::vector的典型用法代码示例。如果您正苦于以下问题:C++ vector类的具体用法?C++ vector怎么用?C++ vector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了vector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: save

inline void save(
    Archive & ar,
    const STD::vector<bool, Allocator> &t,
    const unsigned int /* file_version */
){
    // record number of elements
    unsigned int count = t.size();
    ar << BOOST_SERIALIZATION_NVP(count);
    STD::vector<bool>::const_iterator it = t.begin();
    while(count-- > 0){
        bool tb = *it++;
        ar << boost::serialization::make_nvp("item", tb);
    }
}
开发者ID:Albermg7,项目名称:boost,代码行数:14,代码来源:vector.hpp

示例2: load

inline void load(
    Archive & ar,
    STD::vector<bool, Allocator> &t,
    const unsigned int /* file_version */
){
    // retrieve number of elements
    unsigned int count;
    ar >> BOOST_SERIALIZATION_NVP(count);
    t.clear();
    while(count-- > 0){
        bool i;
        ar >> boost::serialization::make_nvp("item", i);
        t.push_back(i);
    }
}
开发者ID:Albermg7,项目名称:boost,代码行数:15,代码来源:vector.hpp

示例3: debug

/* Export a graph (triangle navmesh graph) to a file
 * Requires:
 * 	@nodes		The list of all the nodes
 * 	@fname		the filename to export the graph
 */
bool TriNavMeshBuilder::exportGraph(const std::vector<GNode *> &nodes,
		const std::vector<GEdge *> &edges,
		const Ogre::String &fname)
{
	std::ofstream out;

	out.open(fname.c_str());
	if(!out.is_open()){
		debug("Error trying to open the file %s\n", fname.c_str());
		return false;
	}

	// get all the vertexs
	std::map<const sm::Vertex *, int> vertexs;
	int vertexCount = 0;
	std::vector<const sm::Vertex *> vertexList;
	for(int i = nodes.size()-1; i >= 0; --i){
		ASSERT(nodes[i]->getTriangle());
		const sm::Vertex *v1 = nodes[i]->getTriangle()->v1;
		const sm::Vertex *v2 = nodes[i]->getTriangle()->v2;
		const sm::Vertex *v3 = nodes[i]->getTriangle()->v3;
		if(vertexs.find(v1) == vertexs.end())
		{vertexs[v1] = vertexCount++; vertexList.push_back(v1);}

		if(vertexs.find(v2) == vertexs.end())
		{vertexs[v2] = vertexCount++; vertexList.push_back(v2);}

		if(vertexs.find(v3) == vertexs.end())
		{vertexs[v3] = vertexCount++; vertexList.push_back(v3);}
	}

	ASSERT(vertexCount == vertexList.size());

	// save the number of vertexs and save the vertexs
	out << vertexCount << "\n";
	for(int i = 0; i < vertexCount; ++i){
		out << vertexList[i]->x << "\t" << vertexList[i]->y << "\n";
	}

	// save the number of nodes and the nodes and the nodeMap
	std::map<const GNode *, int> nodesMap;
	int nodesCount = 0;
	out << nodes.size() << "\n";
	for(int i = 0; i < nodes.size(); ++i){
		if(nodesMap.find(nodes[i]) == nodesMap.end()){nodesMap[nodes[i]] = nodesCount++;}
		const Triangle *t = nodes[i]->getTriangle();
		ASSERT(t);
		// we will save the vertexs index of the triangle of the node
		out << vertexs[t->v1] << "\t" << vertexs[t->v2] << "\t" <<
				vertexs[t->v3] << "\n";
	}

	// save the number of edges and the edges
	out << edges.size() << "\n";
	for(int i = 0; i < edges.size(); ++i){
		const GNode *n1 = edges[i]->getNode1();
		const GNode *n2 = edges[i]->getNode2();
		ASSERT(n1 && n2);

		// we will save the nodes index and the distance
		out << nodesMap[n1] << "\t" << nodesMap[n2] << "\t" <<
				edges[i]->getWeight() << "\n";
	}

	out.close();

	return true;
}
开发者ID:agudpp,项目名称:CordobaZombie,代码行数:73,代码来源:TriNavMeshBuilder.cpp

示例4: assert

template <typename PointT, typename FlannDistance> void
pcl::search::FlannSearch<PointT, FlannDistance>::radiusSearch (
    const PointCloud& cloud, const std::vector<int>& indices, double radius, std::vector< std::vector<int> >& k_indices,
    std::vector< std::vector<float> >& k_sqr_distances, unsigned int max_nn) const
{
  if (indices.empty ()) // full point cloud + trivial copy operation = no need to do any conversion/copying to the flann matrix!
  {
    k_indices.resize (cloud.size ());
    k_sqr_distances.resize (cloud.size ());

    if (! cloud.is_dense) // remove this check as soon as FLANN does NaN checks internally
    {
      for (size_t i = 0; i < cloud.size(); i++)
      {
        assert (point_representation_->isValid (cloud[i]) && "Invalid (NaN, Inf) point coordinates given to radiusSearch!");
      }
    }

    bool can_cast = point_representation_->isTrivial ();

    float* data = 0;
    if (!can_cast)
    {
      data = new float[dim_*cloud.size ()];
      for (size_t i = 0; i < cloud.size (); ++i)
      {
        float* out = data+i*dim_;
        point_representation_->vectorize (cloud[i],out);
      }
    }

    float* cdata = can_cast ? const_cast<float*> (reinterpret_cast<const float*> (&cloud[0])) : data;
    const flann::Matrix<float> m (cdata ,cloud.size (), dim_, can_cast ? sizeof (PointT) : dim_ * sizeof (float));

    flann::SearchParams p;
    p.sorted = sorted_results_;
    p.eps = eps_;
    p.checks = checks_;
    // here: max_nn==0: take all neighbors. flann: max_nn==0: return no neighbors, only count them. max_nn==-1: return all neighbors
    p.max_neighbors = max_nn != 0 ? max_nn : -1;
    index_->radiusSearch (m,k_indices,k_sqr_distances,static_cast<float> (radius * radius), p);

    delete [] data;
  }
  else // if indices are present, the cloud has to be copied anyway. Only copy the relevant parts of the points here.
  {
    k_indices.resize (indices.size ());
    k_sqr_distances.resize (indices.size ());

    if (! cloud.is_dense)  // remove this check as soon as FLANN does NaN checks internally
    {
      for (size_t i = 0; i < indices.size(); i++)
      {
        assert (point_representation_->isValid (cloud [indices[i]]) && "Invalid (NaN, Inf) point coordinates given to radiusSearch!");
      }
    }

    float* data = new float [dim_ * indices.size ()];
    for (size_t i = 0; i < indices.size (); ++i)
    {
      float* out = data+i*dim_;
      point_representation_->vectorize (cloud[indices[i]], out);
    }
    const flann::Matrix<float> m (data, cloud.size (), point_representation_->getNumberOfDimensions ());

    flann::SearchParams p;
    p.sorted = sorted_results_;
    p.eps = eps_;
    p.checks = checks_;
    // here: max_nn==0: take all neighbors. flann: max_nn==0: return no neighbors, only count them. max_nn==-1: return all neighbors
    p.max_neighbors = max_nn != 0 ? max_nn : -1;
    index_->radiusSearch (m, k_indices, k_sqr_distances, static_cast<float> (radius * radius), p);

    delete[] data;
  }
  if (!identity_mapping_)
  {
    for (size_t j = 0; j < k_indices.size (); ++j )
    {
      for (size_t i = 0; i < k_indices[j].size (); ++i)
      {
        int& neighbor_index = k_indices[j][i];
        neighbor_index = index_mapping_[neighbor_index];
      }
    }
  }
}
开发者ID:2php,项目名称:pcl,代码行数:87,代码来源:flann_search.hpp

示例5: IsValidSignatureEncoding

/**
 * A canonical signature exists of: <30> <total len> <02> <len R> <R> <02> <len S> <S> <hashtype>
 * Where R and S are not negative (their first byte has its highest bit not set), and not
 * excessively padded (do not start with a 0 byte, unless an otherwise negative number follows,
 * in which case a single 0 byte is necessary and even required).
 * 
 * See https://cryptomailcointalk.org/index.php?topic=8392.msg127623#msg127623
 *
 * This function is consensus-critical since BIP66.
 */
bool static IsValidSignatureEncoding(const std::vector<unsigned char> &sig) {
    // Format: 0x30 [total-length] 0x02 [R-length] [R] 0x02 [S-length] [S] [sighash]
    // * total-length: 1-byte length descriptor of everything that follows,
    //   excluding the sighash byte.
    // * R-length: 1-byte length descriptor of the R value that follows.
    // * R: arbitrary-length big-endian encoded R value. It must use the shortest
    //   possible encoding for a positive integers (which means no null bytes at
    //   the start, except a single one when the next byte has its highest bit set).
    // * S-length: 1-byte length descriptor of the S value that follows.
    // * S: arbitrary-length big-endian encoded S value. The same rules apply.
    // * sighash: 1-byte value indicating what data is hashed (not part of the DER
    //   signature)

    // Minimum and maximum size constraints.
    if (sig.size() < 9) return false;
    if (sig.size() > 73) return false;

    // A signature is of type 0x30 (compound).
    if (sig[0] != 0x30) return false;

    // Make sure the length covers the entire signature.
    if (sig[1] != sig.size() - 3) return false;

    // Extract the length of the R element.
    unsigned int lenR = sig[3];

    // Make sure the length of the S element is still inside the signature.
    if (5 + lenR >= sig.size()) return false;

    // Extract the length of the S element.
    unsigned int lenS = sig[5 + lenR];

    // Verify that the length of the signature matches the sum of the length
    // of the elements.
    if ((size_t)(lenR + lenS + 7) != sig.size()) return false;
 
    // Check whether the R element is an integer.
    if (sig[2] != 0x02) return false;

    // Zero-length integers are not allowed for R.
    if (lenR == 0) return false;

    // Negative numbers are not allowed for R.
    if (sig[4] & 0x80) return false;

    // Null bytes at the start of R are not allowed, unless R would
    // otherwise be interpreted as a negative number.
    if (lenR > 1 && (sig[4] == 0x00) && !(sig[5] & 0x80)) return false;

    // Check whether the S element is an integer.
    if (sig[lenR + 4] != 0x02) return false;

    // Zero-length integers are not allowed for S.
    if (lenS == 0) return false;

    // Negative numbers are not allowed for S.
    if (sig[lenR + 6] & 0x80) return false;

    // Null bytes at the start of S are not allowed, unless S would otherwise be
    // interpreted as a negative number.
    if (lenS > 1 && (sig[lenR + 6] == 0x00) && !(sig[lenR + 7] & 0x80)) return false;

    return true;
}
开发者ID:sudosurootdev,项目名称:CryptoMailCoin,代码行数:74,代码来源:interpreter.cpp

示例6: loadOBJ

bool loadOBJ(const char* path, std::vector<glm::vec3> &out_vertices, std::vector<glm::vec2> &out_uvs, std::vector<glm::vec3> &out_normals)
{
	std::vector<unsigned int> vertex_indices;
	std::vector<unsigned int> uv_indices;
	std::vector<unsigned int> normal_indices;
	
	std::vector<glm::vec3> temp_vertices;
	std::vector<glm::vec2> temp_uvs;
	std::vector<glm::vec3> temp_normals;
	
	// Opens file
	FILE* file = fopen(path, "r");
	if (file == NULL)
	{
		std::cout << "Couldn't open " << path << std::endl;
		return false;
	}
	
	// Reads file and changes it's shape
	while(true)
	{
		// Reads until End Of File
		char line_header[128];
		int line = fscanf(file, "%s", line_header);
		if (line == EOF)
			break;
		
		if (strcmp(line_header, "v") == 0)
		{
			glm::vec3 vertex;
			fscanf(file, "%f %f %f\n", &vertex.x, &vertex.y, &vertex.z);
			temp_vertices.push_back(vertex);
		} else if (strcmp(line_header, "vt") == 0)
		{
			glm::vec2 uv;
			fscanf(file, "%f %f", &uv.x, &uv.y);
			temp_uvs.push_back(uv);
		} else if (strcmp(line_header, "vn") == 0)
		{
			glm::vec3 normal;
			fscanf(file, "%f %f %f\n", &normal.x, &normal.y, &normal.z);
			temp_normals.push_back(normal);
		} else if (strcmp(line_header, "f") == 0)
		{
			std::string vertex1, vertex2, vertex3;
			unsigned int vertex_index[3], uv_index[3], normal_index[3];
			int matches = fscanf(file, "%d/%d/%d %d/%d/%d %d/%d/%d\n", &vertex_index[0], &uv_index[0], &normal_index[0], &vertex_index[1], &uv_index[1], &normal_index[1], &vertex_index[2], &uv_index[2], &normal_index[2]);
			if (matches != 9)
			{
				std::cout << "File wasn't standard" << std::endl;
				return false;
			}
			vertex_indices.push_back(vertex_index[0]);
			vertex_indices.push_back(vertex_index[1]);
			vertex_indices.push_back(vertex_index[2]);
			uv_indices.push_back(uv_index[0]);
			uv_indices.push_back(uv_index[1]);
			uv_indices.push_back(uv_index[2]);
			normal_indices.push_back(normal_index[0]);
			normal_indices.push_back(normal_index[1]);
			normal_indices.push_back(normal_index[2]);
		}
	}
	
	for(unsigned int i = 0; i < vertex_indices.size(); i++)
	{
		unsigned int vertex_index = vertex_indices[i];
		glm::vec3 vertex = temp_vertices[vertex_index - 1];
		out_vertices.push_back(vertex);
		
		unsigned int uv_index = uv_indices[i];
		glm::vec2 uv = temp_uvs[uv_index - 1];
		out_uvs.push_back(uv);
		
		unsigned int normal_index = normal_indices[i];
		glm::vec3 normal = temp_normals[normal_index - 1];
		out_normals.push_back(normal);
	}
	
	return true;	
}
开发者ID:Jaween,项目名称:ar-trophy,代码行数:81,代码来源:model_helper.cpp

示例7: sizeof

  unsigned long
  StaticRangeCoder::decodeStreamToCharVector (std::istream& inputByteStream_arg,
                                              std::vector<char>& outputByteVector_arg)
  {
    uint8_t ch;
    DWord freq[257];
    unsigned int i;

    // define range limits
    const DWord top = (DWord)1 << 24;
    const DWord bottom = (DWord)1 << 16;

    DWord low, range;
    DWord code;

    unsigned int outputBufPos;
    unsigned int output_size;

    unsigned long streamByteCount;

    streamByteCount = 0;

    output_size = outputByteVector_arg.size ();

    outputBufPos = 0;

    // read cumulative frequency table
    inputByteStream_arg.read ((char*)&freq[0], sizeof(freq));
    streamByteCount += sizeof(freq);

    code = 0;
    low = 0;
    range = (DWord)-1;

    // init code
    for (i = 0; i < 4; i++)
    {
      inputByteStream_arg.read ((char*)&ch, sizeof(char));
      streamByteCount += sizeof(char);
      code = (code << 8) | ch;
    }

    // decoding
    for (i = 0; i < output_size; i++)
    {
      // symbol lookup in cumulative frequency table
      uint8_t symbol = 0;
      uint8_t sSize = 256 / 2;

      DWord count = (code - low) / (range /= freq[256]);

      while (sSize > 0)
      {
        if (freq[symbol + sSize] <= count)
        {
          symbol += sSize;
        }
        sSize /= 2;
      }

      // write symbol to output stream
      outputByteVector_arg[outputBufPos++] = symbol;

      low += freq[symbol] * range;
      range *= freq[symbol + 1] - freq[symbol];

      // check range limits
      while ((low ^ (low + range)) < top || ((range < bottom) && ((range = -low & (bottom - 1)), 1)))
      {
        inputByteStream_arg.read ((char*)&ch, sizeof(char));
        streamByteCount += sizeof(char);
        code = code << 8 | ch;
        range <<= 8;
        low <<= 8;
      }

    }

    return streamByteCount;

  }
开发者ID:MorS25,项目名称:pcl-fuerte,代码行数:81,代码来源:entropy_range_coder.hpp

示例8: memset

  unsigned long
  StaticRangeCoder::encodeCharVectorToStream (const std::vector<char>& inputByteVector_arg,
                                              std::ostream& outputByteStream_arg)
  {
    DWord freq[257];
    uint8_t ch;
    int i, f;
    char out;

    // define numerical limits
    const DWord top = (DWord)1 << 24;
    const DWord bottom = (DWord)1 << 16;
    const DWord maxRange = (DWord)1 << 16;

    DWord low, range;

    unsigned int input_size;
    input_size = inputByteVector_arg.size ();

    unsigned int readPos;

    unsigned long streamByteCount;

    streamByteCount = 0;

    // init output vector
    outputCharVector_.clear();
    outputCharVector_.reserve(sizeof(char) * input_size);

    uint64_t FreqHist[257];

    // calculate frequency table
    memset (FreqHist, 0, sizeof(FreqHist));
    readPos = 0;
    while (readPos < input_size)
    {
      uint8_t symbol = (uint8_t)inputByteVector_arg[readPos++];
      FreqHist[symbol + 1]++;
    }

    // convert to cumulative frequency table
    freq[0] = 0;
    for (f = 1; f <= 256; f++)
    {
      freq[f] = freq[f - 1] + (DWord)FreqHist[f];
      if (freq[f] <= freq[f - 1])
        freq[f] = freq[f - 1] + 1;
    }

    // rescale if numerical limits are reached
    while (freq[256] >= maxRange)
    {
      for (f = 1; f <= 256; f++)
      {
        freq[f] /= 2;
        ;
        if (freq[f] <= freq[f - 1])
          freq[f] = freq[f - 1] + 1;
      }
    }

    // write cumulative  frequency table to output stream
    outputByteStream_arg.write ((const char *)&freq[0], sizeof(freq));
    streamByteCount += sizeof(freq);

    readPos = 0;

    low = 0;
    range = (DWord)-1;

    // start encoding
    while (readPos < input_size)
    {

      // read symol
      ch = inputByteVector_arg[readPos++];

      // map to range
      low += freq[ch] * (range /= freq[256]);
      range *= freq[ch + 1] - freq[ch];

      // check range limits
      while ((low ^ (low + range)) < top || ((range < bottom) && ((range = -low & (bottom - 1)), 1)))
      {
        out = low >> 24;
        range <<= 8;
        low <<= 8;
        outputCharVector_.push_back(out);
      }

    }

    // flush remaining data
    for (i = 0; i < 4; i++)
    {
      out = low >> 24;
      outputCharVector_.push_back(out);
      low <<= 8;
    }

//.........这里部分代码省略.........
开发者ID:MorS25,项目名称:pcl-fuerte,代码行数:101,代码来源:entropy_range_coder.hpp

示例9: while

  unsigned long
  StaticRangeCoder::encodeIntVectorToStream (std::vector<unsigned int>& inputIntVector_arg,
                                             std::ostream& outputByteStream_arg)
  {

    unsigned int inputsymbol;
    unsigned int i, f;
    char out;

    uint64_t frequencyTableSize;
    uint8_t frequencyTableByteSize;

    // define numerical limits
    const uint64_t top = (uint64_t)1 << 56;
    const uint64_t bottom = (uint64_t)1 << 48;
    const uint64_t maxRange = (uint64_t)1 << 48;

    unsigned long input_size = (unsigned) inputIntVector_arg.size ();
    uint64_t low, range;

    unsigned int inputSymbol;

    unsigned int readPos;

    unsigned long streamByteCount;

    streamByteCount = 0;

    // init output vector
    outputCharVector_.clear();
    outputCharVector_.reserve(sizeof(char) * input_size * 2);

    frequencyTableSize = 1;

    readPos = 0;

    // calculate frequency table
    cFreqTable_[0] = cFreqTable_[1] = 0;
    while (readPos < input_size)
    {
      inputSymbol = inputIntVector_arg[readPos++];

      if (inputSymbol + 1 >= frequencyTableSize)
      {
        // frequency table is to small -> adaptively extend it
        uint64_t oldfrequencyTableSize;
        oldfrequencyTableSize = frequencyTableSize;

        do
        {
          // increase frequency table size by factor 2
          frequencyTableSize <<= 1;
        } while (inputSymbol + 1 > frequencyTableSize);

        if (cFreqTable_.size () < frequencyTableSize + 1)
        {
          // resize frequency vector
          cFreqTable_.resize (frequencyTableSize + 1);
        }

        // init new frequency range with zero
        memset (&cFreqTable_[oldfrequencyTableSize + 1], 0,
                sizeof(uint64_t) * (frequencyTableSize - oldfrequencyTableSize));
      }
      cFreqTable_[inputSymbol + 1]++;
    }
    frequencyTableSize++;

    // convert to cumulative frequency table
    for (f = 1; f < frequencyTableSize; f++)
    {
      cFreqTable_[f] = cFreqTable_[f - 1] + cFreqTable_[f];
      if (cFreqTable_[f] <= cFreqTable_[f - 1])
        cFreqTable_[f] = cFreqTable_[f - 1] + 1;
    }

    // rescale if numerical limits are reached
    while (cFreqTable_[frequencyTableSize - 1] >= maxRange)
    {
      for (f = 1; f < cFreqTable_.size (); f++)
      {
        cFreqTable_[f] /= 2;
        ;
        if (cFreqTable_[f] <= cFreqTable_[f - 1])
          cFreqTable_[f] = cFreqTable_[f - 1] + 1;
      }
    }

    // calculate amount of bytes per frequency table entry
    frequencyTableByteSize = (uint8_t)ceil (Log2 ((double) cFreqTable_[frequencyTableSize - 1]) / 8.0);

    // write size of frequency table to output stream
    outputByteStream_arg.write ((const char *)&frequencyTableSize, sizeof(frequencyTableSize));
    outputByteStream_arg.write ((const char *)&frequencyTableByteSize, sizeof(frequencyTableByteSize));

    streamByteCount += sizeof(frequencyTableSize)+sizeof(frequencyTableByteSize);

    // write cumulative  frequency table to output stream
    for (f = 1; f < frequencyTableSize; f++)
    {
//.........这里部分代码省略.........
开发者ID:MorS25,项目名称:pcl-fuerte,代码行数:101,代码来源:entropy_range_coder.hpp

示例10: setup_one_l3_interface

//L3 Interface Initialization
static bool setup_one_l3_interface(sai_vlan_id_t vlanid,
                                   int port_count,
                                   const sai_object_id_t *port_list,
                                   const MacAddress mac,
                                   const IpAddress ipaddr,
                                   const IpAddress ipmask,
                                   sai_object_id_t &rif_id)
{

    LOGG(TEST_INFO, SETL3, "sai_vlan_api->create_vlan, create vlan %hu.\n", vlanid);
    sai_status_t status = sai_vlan_api->create_vlan(vlanid);

    if (status != SAI_STATUS_SUCCESS && status != SAI_STATUS_ITEM_ALREADY_EXISTS)
    {
        LOGG(TEST_ERR, SETL3, "fail to create vlan %hu. status=0x%x\n", vlanid, -status);
        return false;
    }

    std::vector<sai_attribute_t> member_attrs;
    sai_attribute_t member_attr;
    sai_object_id_t vlan_member_id;
    
    for (int i = 0; i < port_count; ++i)
    {
        member_attr.id = SAI_VLAN_MEMBER_ATTR_VLAN_ID;
        member_attr.value.u16 = vlanid;
        member_attrs.push_back(member_attr);
        
        member_attr.id = SAI_VLAN_MEMBER_ATTR_PORT_ID;
        member_attr.value.oid =  port_list[i];
        member_attrs.push_back(member_attr);

        member_attr.id = SAI_VLAN_MEMBER_ATTR_TAGGING_MODE;
        member_attr.value.s32 = SAI_VLAN_PORT_UNTAGGED;
        member_attrs.push_back(member_attr);

        LOGG(TEST_INFO, SETL3, "sai_vlan_api->create_vlan_member, with vlan %d.\n", vlanid);
        status = sai_vlan_api->create_vlan_member(&vlan_member_id, member_attrs.size(), member_attrs.data());
        if (status != SAI_STATUS_SUCCESS)
        {
            LOGG(TEST_ERR, SETL3, "fail to create member vlan %hu. status=0x%x\n",  vlanid, -status);
            return false;
        }
        vlan_member_list.push_back(vlan_member_id);
    }

    sai_attribute_t attr;
    attr.id = SAI_PORT_ATTR_PORT_VLAN_ID;
    attr.value.u16 = vlanid;

    for (int i = 0; i < port_count; ++i)
    {
        LOGG(TEST_INFO, SETL3, "sai_port_api->set_port_attribute SAI_PORT_ATTR_PORT_VLAN_ID %hu to port 0x%lx\n",
             vlanid,  port_list[i]);
        status = sai_port_api->set_port_attribute(port_list[i], &attr);

        if (status != SAI_STATUS_SUCCESS)
        {
            LOGG(TEST_ERR, SETL3, "fail to set port %lu untagged vlan %hu. status=0x%x\n", port_list[i], vlanid, -status);
            return false;
        }
    }

    // create router interface
    std::vector<sai_attribute_t> rif_attrs;
    sai_attribute_t rif_attr;

    rif_attr.id = SAI_ROUTER_INTERFACE_ATTR_VIRTUAL_ROUTER_ID;
    rif_attr.value.oid = g_vr_id;
    rif_attrs.push_back(rif_attr);

    rif_attr.id = SAI_ROUTER_INTERFACE_ATTR_TYPE;
    rif_attr.value.s32 = SAI_ROUTER_INTERFACE_TYPE_VLAN;
    rif_attrs.push_back(rif_attr);

    rif_attr.id = SAI_ROUTER_INTERFACE_ATTR_SRC_MAC_ADDRESS;
    memcpy(rif_attr.value.mac, mac.to_bytes(), sizeof(sai_mac_t));
    rif_attrs.push_back(rif_attr);

    rif_attr.id = SAI_ROUTER_INTERFACE_ATTR_VLAN_ID;
    rif_attr.value.u16 = vlanid;
    rif_attrs.push_back(rif_attr);

    LOGG(TEST_INFO, SETL3, "sai_rif_api->create_router_interface\n");
    status = sai_rif_api->create_router_interface(&rif_id, rif_attrs.size(), rif_attrs.data());

    if (status != SAI_STATUS_SUCCESS)
    {
        LOGG(TEST_ERR, SETL3, "fail to create router interface. status=0x%x\n", -status);
        return false;
    }

    if (!SAI_OID_TYPE_CHECK(rif_id, SAI_OBJECT_TYPE_ROUTER_INTERFACE))
    {
        LOGG(TEST_ERR, SETL3, "router interface oid generated is not the right type\n");
        return false;
    }

    LOGG(TEST_DEBUG, SETL3, "router_interface created, rif_id 0x%lx\n", rif_id);
//.........这里部分代码省略.........
开发者ID:CentecNetworks,项目名称:SAI,代码行数:101,代码来源:basic_router.cpp

示例11: basic_router_setup


//.........这里部分代码省略.........
            LOGG(TEST_ERR, SETL3, "fail to set port 0x%lx admin state to UP: %d\n", port_list[i], -status);
            return false;
        }

        attr.id = SAI_PORT_ATTR_FDB_LEARNING;
        attr.value.s32 = SAI_PORT_LEARN_MODE_HW;
        status = sai_port_api->set_port_attribute(port_list[i], &attr);

        if (status != SAI_STATUS_SUCCESS)
        {
            LOGG(TEST_ERR, SETL3, "fail to set port 0x%lx learning mode to hw: %d\n", port_list[i], -status);
            return false;
        }
    }

    //one interface for each port
    for (i = 0; i < g_testcount; i++)
    {
        g_intfAlias[i] = "et0_" + to_string(i + 1);
        g_ipAddr[i] = IpAddress("10.10." + to_string(140 + i + 1) + "." + to_string(130));
        g_ipMask[i] = IpAddress("255.255.255.252");
        g_macAddr[i] = MacAddress("00:11:11:11:11:" + to_string(i + 1));
    }

    for (i = 0; i < g_testcount; i++)
    {

        LOGG(TEST_DEBUG, SETL3, "--- interface %s %s/%s %s ---\n",
             g_intfAlias[i].c_str(),
             g_ipAddr[i].to_string().c_str(),
             g_ipMask[i].to_string().c_str(),
             g_macAddr[i].to_string().c_str()
            );
        std::vector<sai_object_id_t> port_objlist;
        long unsigned int vlanid;
        sai_attribute_t attr;
        std::vector<sai_attribute_t> attr_list;

        //assuming interface is of PANEL_INTF
        vlanid = PANEL_PORT_VLAN_START + i + 1;

        port_objlist.push_back(port_list[i]);

        if (!setup_one_l3_interface(vlanid, port_objlist.size(), port_objlist.data(),
                                    g_macAddr[i], g_ipAddr[i], g_ipMask[i], g_rif_id[i]))
        {
            LOGG(TEST_ERR, SETL3, "fail to setup l3 interface for %s\n", g_intfAlias[i].c_str());
            return false;
        }

        LOGG(TEST_DEBUG, SETL3, "setup_l3_interface for %s successfully\n",
             g_intfAlias[i].c_str());

        attr.id = SAI_HOSTIF_ATTR_TYPE;
        attr.value.s32 = SAI_HOSTIF_TYPE_NETDEV;
        attr_list.push_back(attr);

        attr.id = SAI_HOSTIF_ATTR_RIF_OR_PORT_ID;
        attr.value.oid = port_list[i];
        attr_list.push_back(attr);

        attr.id = SAI_HOSTIF_ATTR_NAME;
        strncpy((char *)&attr.value.chardata, g_intfAlias[i].c_str(), HOSTIF_NAME_SIZE);
        attr_list.push_back(attr);

        LOGG(TEST_INFO, SETL3, "sai_hif_api->create_hostif name %s\n", g_intfAlias[i].c_str());
开发者ID:CentecNetworks,项目名称:SAI,代码行数:67,代码来源:basic_router.cpp

示例12: write

//cached call
bool DCDTrajectoryWriter::write(const std::vector<Vector3DBlock> &cachedCoords) {
  
  //push out if sufficient
  if( cachedCoords.size() > 0 ){
    report << debug(1) <<"Writing DCD, multiple frames." << endr;
    
    //original code modified for caching, index 0 must exist here
    const unsigned int setcount = cachedCoords.size();
    const unsigned int count = cachedCoords[0].size();//ccoords.size();
    if (!reopen(count, setcount)) return false;
    
    //loop over each set of coordinates
    for( int i=0; i<setcount; i++){
      Vector3DBlock ccoords = cachedCoords[i];
      
      //original code
      //const unsigned int count = ccoords.size();
      //if (!reopen(count)) return false;
      
      myX.resize(count);
      myY.resize(count);
      myZ.resize(count);
      
      for (unsigned int i = 0; i < count; ++i) {
        myX[i] = static_cast<float>(ccoords[i].c[0]);
        myY[i] = static_cast<float>(ccoords[i].c[1]);
        myZ[i] = static_cast<float>(ccoords[i].c[2]);
        if (myIsLittleEndian != ISLITTLEENDIAN) {
          swapBytes(myX[i]);
          swapBytes(myY[i]);
          swapBytes(myZ[i]);
        }
      }
      
      int32 nAtoms = static_cast<int32>(count * 4);
      if (myIsLittleEndian != ISLITTLEENDIAN) swapBytes(nAtoms);
      
      file.write((char *)&nAtoms, sizeof(int32));
      file.write((char *)&(myX[0]), count * sizeof(float4));
      file.write((char *)&nAtoms, sizeof(int32));
      
      file.write((char *)&nAtoms, sizeof(int32));
      file.write((char *)&(myY[0]), count * sizeof(float4));
      file.write((char *)&nAtoms, sizeof(int32));
      
      file.write((char *)&nAtoms, sizeof(int32));
      file.write((char *)&(myZ[0]), count * sizeof(float4));
      file.write((char *)&nAtoms, sizeof(int32));
      
      //close();
      
      if( file.fail() ){
        close();
        return false;
      }//end of coordinate save
      
    }//end of loop
    
    //close file once strored
    close();
    return true;//!file.fail();
  }
}
开发者ID:LCLS,项目名称:ProtoMol,代码行数:64,代码来源:DCDTrajectoryWriter.cpp

示例13: trendCubeNames

CravaTrend::CravaTrend(Simbox                       * timeSimbox,
                       Simbox                       * timeCutSimbox,
                       ModelSettings                * modelSettings,
                       bool                         & failed,
                       std::string                  & errTxt,
                       const InputFiles             * inputFiles)
{

  n_samples_ = 1000;

  const std::vector<std::string> trend_cube_parameters = modelSettings->getTrendCubeParameters();
  const std::vector<int>         trend_cube_type       = modelSettings->getTrendCubeType();
  n_trend_cubes_                                       = static_cast<int>(trend_cube_parameters.size());

  std::vector<std::string> trendCubeNames(n_trend_cubes_);

  if(n_trend_cubes_ > 0) {

    std::string errorText  = "";

    const int nx   = timeSimbox->getnx();
    const int ny   = timeSimbox->getny();
    const int nz   = timeSimbox->getnz();
    const int nxp  = nx;
    const int nyp  = ny;
    const int nzp  = nz;
    const int rnxp = 2*(nxp/2 + 1);

    for(int grid_number=0; grid_number<n_trend_cubes_; grid_number++) {

      FFTGrid * trend_cube = NULL;

      const std::string   log_name   = "trend cube '"+trend_cube_parameters[grid_number]+"'";

      if(trend_cube_type[grid_number] == ModelSettings::CUBE_FROM_FILE) {

        trendCubeNames[grid_number] = inputFiles->getTrendCube(grid_number);

        const SegyGeometry      * dummy1     = NULL;
        const TraceHeaderFormat * dummy2     = NULL;
        const float               offset     = modelSettings->getSegyOffset(0); //Facies estimation only allowed for one time lapse

        ModelGeneral::readGridFromFile(trendCubeNames[grid_number],
                                       log_name,
                                       offset,
                                       trend_cube,
                                       dummy1,
                                       dummy2,
                                       FFTGrid::PARAMETER,
                                       timeSimbox,
                                       timeCutSimbox,
                                       modelSettings,
                                       errorText,
                                       true);

        if(errorText != "") {
          errorText += "Reading of file \'"+trendCubeNames[grid_number]+"\' failed\n";
          errTxt    += errorText;
          failed     = true;
        }
      }

      else if(trend_cube_type[grid_number] == ModelSettings::STRATIGRAPHIC_DEPTH) {

        LogKit::LogFormatted(LogKit::Low,"\nGenerating trend grid \'"+trend_cube_parameters[grid_number]+"\'\n");

        trend_cube = ModelGeneral::createFFTGrid(nx, ny, nz, nxp, nyp, nzp, false);
        trend_cube->createRealGrid();
        trend_cube->setAccessMode(FFTGrid::WRITE);

        for(int k=0; k<nzp; k++) {
          for(int j=0; j<nyp; j++) {
            for(int i=0; i<rnxp; i++) {
              if(i < nx)
                trend_cube->setRealValue(i, j, k, static_cast<float>(k));
              else
                trend_cube->setRealValue(i, j, k, 0);
            }
          }
        }

        trend_cube->endAccess();
      }

      else if(trend_cube_type[grid_number] == ModelSettings::TWT) {

        LogKit::LogFormatted(LogKit::Low,"\nGenerating trend grid \'"+trend_cube_parameters[grid_number]+"\'\n");

        trend_cube = ModelGeneral::createFFTGrid(nx, ny, nz, nxp, nyp, nzp, false);
        trend_cube->createRealGrid();
        trend_cube->setAccessMode(FFTGrid::WRITE);

        for(int k=0; k<nzp; k++) {
          for(int j=0; j<nyp; j++) {
            for(int i=0; i<rnxp; i++) {
              if(i < nx) {
                float value = static_cast<float>(timeSimbox->getTop(i,j) + timeSimbox->getdz(i,j)*k);
                trend_cube->setRealValue(i, j, k, value);
              }
              else
//.........这里部分代码省略.........
开发者ID:gudmund-hermansen,项目名称:crava,代码行数:101,代码来源:cravatrend.cpp

示例14: FuzzerDriver

int FuzzerDriver(const std::vector<std::string> &Args,
                 UserSuppliedFuzzer &USF) {
  using namespace fuzzer;
  assert(!Args.empty());
  ProgName = new std::string(Args[0]);
  ParseFlags(Args);
  if (Flags.help) {
    PrintHelp();
    return 0;
  }

  if (Flags.jobs > 0 && Flags.workers == 0) {
    Flags.workers = std::min(NumberOfCpuCores() / 2, Flags.jobs);
    if (Flags.workers > 1)
      Printf("Running %d workers\n", Flags.workers);
  }

  if (Flags.workers > 0 && Flags.jobs > 0)
    return RunInMultipleProcesses(Args, Flags.workers, Flags.jobs);

  Fuzzer::FuzzingOptions Options;
  Options.Verbosity = Flags.verbosity;
  Options.MaxLen = Flags.max_len;
  Options.UnitTimeoutSec = Flags.timeout;
  Options.MaxTotalTimeSec = Flags.max_total_time;
  Options.DoCrossOver = Flags.cross_over;
  Options.MutateDepth = Flags.mutate_depth;
  Options.ExitOnFirst = Flags.exit_on_first;
  Options.UseCounters = Flags.use_counters;
  Options.UseIndirCalls = Flags.use_indir_calls;
  Options.UseTraces = Flags.use_traces;
  Options.ShuffleAtStartUp = Flags.shuffle;
  Options.PreferSmallDuringInitialShuffle =
      Flags.prefer_small_during_initial_shuffle;
  Options.Reload = Flags.reload;
  Options.OnlyASCII = Flags.only_ascii;
  Options.TBMDepth = Flags.tbm_depth;
  Options.TBMWidth = Flags.tbm_width;
  if (Flags.runs >= 0)
    Options.MaxNumberOfRuns = Flags.runs;
  if (!Inputs->empty())
    Options.OutputCorpus = (*Inputs)[0];
  if (Flags.sync_command)
    Options.SyncCommand = Flags.sync_command;
  Options.SyncTimeout = Flags.sync_timeout;
  Options.ReportSlowUnits = Flags.report_slow_units;
  if (Flags.artifact_prefix)
    Options.ArtifactPrefix = Flags.artifact_prefix;
  if (Flags.dict)
    if (!ParseDictionaryFile(FileToString(Flags.dict), &Options.Dictionary))
      return 1;
  if (Flags.verbosity > 0 && !Options.Dictionary.empty())
    Printf("Dictionary: %zd entries\n", Options.Dictionary.size());
  Options.SaveArtifacts = !Flags.test_single_input;

  Fuzzer F(USF, Options);

  // Timer
  if (Flags.timeout > 0)
    SetTimer(Flags.timeout / 2 + 1);

  if (Flags.test_single_input)
    return RunOneTest(&F, Flags.test_single_input);

  if (Flags.merge) {
    F.Merge(*Inputs);
    exit(0);
  }

  unsigned Seed = Flags.seed;
  // Initialize Seed.
  if (Seed == 0)
    Seed = time(0) * 10000 + getpid();
  if (Flags.verbosity)
    Printf("Seed: %u\n", Seed);
  USF.GetRand().ResetSeed(Seed);

  F.RereadOutputCorpus();
  for (auto &inp : *Inputs)
    if (inp != Options.OutputCorpus)
      F.ReadDir(inp, nullptr);

  if (F.CorpusSize() == 0)
    F.AddToCorpus(Unit());  // Can't fuzz empty corpus, so add an empty input.
  F.ShuffleAndMinimize();
  if (Flags.save_minimized_corpus)
    F.SaveCorpus();
  F.Loop();
  if (Flags.verbosity)
    Printf("Done %d runs in %zd second(s)\n", F.getTotalNumberOfRuns(),
           F.secondsSinceProcessStartUp());

  exit(0);  // Don't let F destroy itself.
}
开发者ID:RichardsonAlex,项目名称:llvm-1,代码行数:94,代码来源:FuzzerDriver.cpp

示例15: termcrit

/// Perform tracking
std::vector<cv::DMatch> MatcherOpenCV::performTracking(cv::Mat prevImg,
		cv::Mat img, std::vector<cv::Point2f> &prevFeatures,
		std::vector<cv::Point2f> &features,
		std::vector<cv::KeyPoint>& prevKeyPoints,
		std::vector<cv::KeyPoint>& keyPoints,
        std::vector<double>& prevDetDists,
        std::vector<double>& detDists) {

	// Some needed variables
	std::vector<uchar> status;
	std::vector<float> err;
	cv::TermCriteria termcrit(CV_TERMCRIT_ITER | CV_TERMCRIT_EPS,
			matcherParameters.OpenCVParams.maxIter,
			matcherParameters.OpenCVParams.eps);

	// Setting OpenCV flags based on our parameters
	int trackingFlags = 0;
	if (matcherParameters.OpenCVParams.useInitialFlow > 0)
		trackingFlags = cv::OPTFLOW_USE_INITIAL_FLOW;
	if (matcherParameters.OpenCVParams.trackingErrorType > 0)
			trackingFlags |= cv::OPTFLOW_LK_GET_MIN_EIGENVALS;

	// Calculating the movement of features
	cv::calcOpticalFlowPyrLK(prevImg, img, prevFeatures, features, status,
					err,
					cv::Size(matcherParameters.OpenCVParams.winSize,
							matcherParameters.OpenCVParams.winSize),
					matcherParameters.OpenCVParams.maxLevels, termcrit,
					trackingFlags,
					matcherParameters.OpenCVParams.trackingMinEigThreshold);

	keyPoints = prevKeyPoints;
	//copy new positions to keyPoints
	for(std::vector<cv::Point2f>::size_type i = 0; i < features.size(); ++i){
		keyPoints[i].pt = features[i];
	}
	detDists = prevDetDists;

	// This parts removes additional features for which we observed an error above preset threshold
	int errSize = (int)err.size();
	for (int i = 0; i < errSize; i++) {
		if (err[i] > matcherParameters.OpenCVParams.trackingErrorThreshold)
			status[i] = 0;
	}

	// Removing features if they are too close to each other - the feature to remove is based on an error from tracking
	std::set<int> featuresToRemove;
	for (std::vector<cv::Point2f>::size_type i = 0; i < features.size(); i++) {
		for (std::vector<cv::Point2f>::size_type j = i + 1; j < features.size(); j++) {
			if (cv::norm(features[i] - features[j]) < matcherParameters.OpenCVParams.minimalReprojDistanceNewTrackingFeatures) {
				if ( err[i] > err[j])
					featuresToRemove.insert((int)i);
				else
					featuresToRemove.insert((int)j);
			}
		}
	}

	// Returning result in matching-compatible format
	int i = 0, j = 0;
	std::vector<cv::DMatch> matches;
	std::vector<cv::Point2f>::iterator itFeatures = features.begin();
	std::vector<cv::KeyPoint>::iterator itKeyPoints = keyPoints.begin();
    std::vector<double>::iterator itDetDists = detDists.begin();
	std::vector<uchar>::iterator it = status.begin();
	for (; it != status.end(); ++it, i++) {

		// Tracking succeed and the feature is not too close to feature with more precise tracking
		if (*it != 0  && featuresToRemove.find(i) == featuresToRemove.end()) {
			matches.push_back(cv::DMatch(i, j, 0));
			j++;
			++itFeatures;
			++itKeyPoints;
			++itDetDists;
		}
		// Tracking failed -- we remove those features
		else {
			itFeatures = features.erase(itFeatures);
			itKeyPoints = keyPoints.erase(itKeyPoints);
			itDetDists = detDists.erase(itDetDists);
		}
	}

	if (matcherParameters.verbose > 0)
		std::cout << "MatcherOpenCV::performTracking -- features tracked "
				<< matches.size() << " ("
				<< (float)matches.size() * 100.0 / (float)prevFeatures.size() << "%)"
				<< std::endl;

	// Return result
	return matches;
}
开发者ID:LRMPUT,项目名称:PUTSLAM,代码行数:93,代码来源:matcherOpenCV.cpp


注:本文中的std::vector类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。