本文整理汇总了C++中sp::LagrangianDS::boundaryConditions方法的典型用法代码示例。如果您正苦于以下问题:C++ LagrangianDS::boundaryConditions方法的具体用法?C++ LagrangianDS::boundaryConditions怎么用?C++ LagrangianDS::boundaryConditions使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类sp::LagrangianDS
的用法示例。
在下文中一共展示了LagrangianDS::boundaryConditions方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: computeInteractionBlock
//.........这里部分代码省略.........
relationType2 == NewtonEuler)
{
assert(inter1 != inter2);
currentInteractionBlock->zero();
#ifdef MLCPPROJ_WITH_CT
unsigned int sizeDS = (std11::static_pointer_cast<NewtonEulerDS>(ds))->getDim();
leftInteractionBlock.reset(new SimpleMatrix(sizeY1, sizeDS));
inter1->getLeftInteractionBlockForDS(pos1, leftInteractionBlock);
SP::NewtonEulerDS neds = (std11::static_pointer_cast<NewtonEulerDS>(ds));
SP::SimpleMatrix T = neds->T();
SP::SimpleMatrix workT(new SimpleMatrix(*T));
workT->trans();
SP::SimpleMatrix workT2(new SimpleMatrix(6, 6));
prod(*workT, *T, *workT2, true);
rightInteractionBlock.reset(new SimpleMatrix(sizeY2, sizeDS));
inter2->getLeftInteractionBlockForDS(pos2, rightInteractionBlock);
rightInteractionBlock->trans();
workT2->PLUForwardBackwardInPlace(*rightInteractionBlock);
prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
#else
unsigned int sizeDS = (std11::static_pointer_cast<NewtonEulerDS>(ds))->getqDim();
leftInteractionBlock.reset(new SimpleMatrix(sizeY1, sizeDS));
inter1->getLeftInteractionBlockForDSProjectOnConstraints(pos1, leftInteractionBlock);
SP::NewtonEulerDS neds = (std11::static_pointer_cast<NewtonEulerDS>(ds));
rightInteractionBlock.reset(new SimpleMatrix(sizeY2, sizeDS));
inter2->getLeftInteractionBlockForDSProjectOnConstraints(pos2, rightInteractionBlock);
rightInteractionBlock->trans();
prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
}
#endif
else if (relationType1 == Lagrangian &&
relationType2 == Lagrangian)
{
unsigned int sizeDS = ds->getDim();
leftInteractionBlock.reset(new SimpleMatrix(sizeY1, sizeDS));
inter1->getLeftInteractionBlockForDS(pos1, leftInteractionBlock, workMInter1);
Type::Siconos dsType = Type::value(*ds);
if (dsType == Type::LagrangianLinearTIDS || dsType == Type::LagrangianDS)
{
SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
if (d->boundaryConditions()) // V.A. Should we do that ?
{
for (std::vector<unsigned int>::iterator itindex =
d->boundaryConditions()->velocityIndices()->begin() ;
itindex != d->boundaryConditions()->velocityIndices()->end();
++itindex)
{
// (sizeY1,sizeDS));
SP::SiconosVector coltmp(new SiconosVector(sizeY1));
coltmp->zero();
leftInteractionBlock->setCol(*itindex, *coltmp);
}
}
}
#ifdef MLCPPROJ_DEBUG
std::cout << "MLCPProjectOnConstraints::computeInteractionBlock : leftInteractionBlock" << std::endl;
leftInteractionBlock->display();
#endif
// inter1 != inter2
rightInteractionBlock.reset(new SimpleMatrix(sizeY2, sizeDS));
inter2->getLeftInteractionBlockForDS(pos2, rightInteractionBlock, workMInter2);
#ifdef MLCPPROJ_DEBUG
std::cout << "MLCPProjectOnConstraints::computeInteractionBlock : rightInteractionBlock" << std::endl;
rightInteractionBlock->display();
#endif
// Warning: we use getLeft for Right interactionBlock
// because right = transpose(left) and because of
// size checking inside the getBlock function, a
// getRight call will fail.
SP::SiconosMatrix centralInteractionBlock = getOSIMatrix(Osi, ds);
#ifdef MLCPPROJ_DEBUG
std::cout << "MLCPProjectOnConstraints::computeInteractionBlock : centralInteractionBlocks " << std::endl;
centralInteractionBlock->display();
#endif
rightInteractionBlock->trans();
if (_useMassNormalization)
{
centralInteractionBlock->PLUForwardBackwardInPlace(*rightInteractionBlock);
//*currentInteractionBlock += *leftInteractionBlock ** work;
prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
}
else
{
prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
}
#ifdef MLCPPROJ_DEBUG
std::cout << "MLCPProjectOnConstraints::computeInteractionBlock : currentInteractionBlock" << std::endl;
currentInteractionBlock->display();
#endif
}
else
RuntimeException::selfThrow("MLCPProjectOnConstraints::computeInteractionBlock not yet implemented for relation of type " + relationType1);
}
示例2: computeDiagonalInteractionBlock
//.........这里部分代码省略.........
SP::SiconosMatrix currentInteractionBlock = indexSet->properties(vd).block;
SP::SiconosMatrix leftInteractionBlock, rightInteractionBlock;
RELATION::TYPES relationType;
double h = simulation()->currentTimeStep();
// General form of the interactionBlock is : interactionBlock =
// a*extraInteractionBlock + b * leftInteractionBlock * centralInteractionBlocks
// * rightInteractionBlock a and b are scalars, centralInteractionBlocks a
// matrix depending on the integrator (and on the DS), the
// simulation type ... left, right and extra depend on the relation
// type and the non smooth law.
relationType = inter->relation()->getType();
VectorOfSMatrices& workMInter = *indexSet->properties(vd).workMatrices;
inter->getExtraInteractionBlock(currentInteractionBlock, workMInter);
unsigned int nslawSize = inter->nonSmoothLaw()->size();
// loop over the DS connected to the interaction.
bool endl = false;
unsigned int pos = pos1;
for (SP::DynamicalSystem ds = DS1; !endl; ds = DS2)
{
assert(ds == DS1 || ds == DS2);
endl = (ds == DS2);
unsigned int sizeDS = ds->dimension();
// get _interactionBlocks corresponding to the current DS
// These _interactionBlocks depends on the relation type.
leftInteractionBlock.reset(new SimpleMatrix(nslawSize, sizeDS));
inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock, workMInter);
DEBUG_EXPR(leftInteractionBlock->display(););
// Computing depends on relation type -> move this in Interaction method?
if (relationType == FirstOrder)
{
rightInteractionBlock.reset(new SimpleMatrix(sizeDS, nslawSize));
inter->getRightInteractionBlockForDS(pos, rightInteractionBlock, workMInter);
if (osiType == OSI::EULERMOREAUOSI)
{
if ((std11::static_pointer_cast<EulerMoreauOSI> (Osi))->useGamma() || (std11::static_pointer_cast<EulerMoreauOSI> (Osi))->useGammaForRelation())
{
*rightInteractionBlock *= (std11::static_pointer_cast<EulerMoreauOSI> (Osi))->gamma();
}
}
// for ZOH, we have a different formula ...
if (osiType == OSI::ZOHOSI && indexSet->properties(vd).forControl)
{
*rightInteractionBlock = std11::static_pointer_cast<ZeroOrderHoldOSI>(Osi)->Bd(ds);
prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
}
else
{
// centralInteractionBlock contains a lu-factorized matrix and we solve
// centralInteractionBlock * X = rightInteractionBlock with PLU
SP::SiconosMatrix centralInteractionBlock = getOSIMatrix(Osi, ds);
centralInteractionBlock->PLUForwardBackwardInPlace(*rightInteractionBlock);
inter->computeKhat(*rightInteractionBlock, workMInter, h); // if K is non 0
// integration of r with theta method removed
// *currentInteractionBlock += h *Theta[*itDS]* *leftInteractionBlock * (*rightInteractionBlock); //left = C, right = W.B
//gemm(h,*leftInteractionBlock,*rightInteractionBlock,1.0,*currentInteractionBlock);
*leftInteractionBlock *= h;
prod(*leftInteractionBlock, *rightInteractionBlock, *currentInteractionBlock, false);
//left = C, right = inv(W).B
}
}
else if (relationType == Lagrangian ||
relationType == NewtonEuler)
{
SP::BoundaryCondition bc;
Type::Siconos dsType = Type::value(*ds);
if (dsType == Type::LagrangianLinearTIDS || dsType == Type::LagrangianDS)
{
SP::LagrangianDS d = std11::static_pointer_cast<LagrangianDS> (ds);
if (d->boundaryConditions()) bc = d->boundaryConditions();
}
else if (dsType == Type::NewtonEulerDS)
{
SP::NewtonEulerDS d = std11::static_pointer_cast<NewtonEulerDS> (ds);
if (d->boundaryConditions()) bc = d->boundaryConditions();
}
if (bc)
{
for (std::vector<unsigned int>::iterator itindex = bc->velocityIndices()->begin() ;
itindex != bc->velocityIndices()->end();
++itindex)
{
// (nslawSize,sizeDS));
SP::SiconosVector coltmp(new SiconosVector(nslawSize));
coltmp->zero();
leftInteractionBlock->setCol(*itindex, *coltmp);
}
}
DEBUG_PRINT("leftInteractionBlock after application of boundary conditions\n");
DEBUG_EXPR(leftInteractionBlock->display(););
示例3: computeDiagonalInteractionBlock
void MLCPProjectOnConstraints::computeDiagonalInteractionBlock(const InteractionsGraph::VDescriptor& vd)
{
SP::InteractionsGraph indexSet = simulation()->indexSet(indexSetLevel());
SP::DynamicalSystem DS1 = indexSet->properties(vd).source;
SP::DynamicalSystem DS2 = indexSet->properties(vd).target;
SP::Interaction inter = indexSet->bundle(vd);
SP::OneStepIntegrator Osi = indexSet->properties(vd).osi;
unsigned int pos1, pos2;
pos1 = indexSet->properties(vd).source_pos;
pos2 = indexSet->properties(vd).target_pos;
unsigned int sizeY = 0;
sizeY = std11::static_pointer_cast<OSNSMatrixProjectOnConstraints>
(_M)->computeSizeForProjection(inter);
#ifdef MLCPPROJ_DEBUG
std::cout << "\nMLCPProjectOnConstraints::computeDiagonalInteractionBlock" <<std::endl;
std::cout << "indexSetLevel()" << indexSetLevel() << std::endl;
// std::cout << "indexSet :"<< indexSet << std::endl;
// std::cout << "vd :"<< vd << std::endl;
// indexSet->display();
// std::cout << "DS1 :" << std::endl;
// DS1->display();
// std::cout << "DS2 :" << std::endl;
// DS2->display();
#endif
assert(indexSet->blockProj[vd]);
SP::SiconosMatrix currentInteractionBlock = indexSet->blockProj[vd];
#ifdef MLCPPROJ_DEBUG
// std::cout<<"MLCPProjectOnConstraints::computeDiagonalInteractionBlock "<<std::endl;
// currentInteractionBlock->display();
std::cout << "sizeY " << sizeY << std::endl;
std::cout << "blockProj " << indexSet->blockProj[vd].get() << " of edge " << vd << " of size " << currentInteractionBlock->size(0) << " x " << currentInteractionBlock->size(0) << " for interaction " << inter->number() << std::endl;
// std::cout<<"inter1->display() "<< inter1->number()<< std::endl;
//inter1->display();
// std::cout<<"inter2->display() "<< inter2->number()<< std::endl;
//inter2->display();
#endif
assert(currentInteractionBlock->size(0) == sizeY);
assert(currentInteractionBlock->size(1) == sizeY);
if (!_hasBeenUpdated)
computeOptions(inter, inter);
// Computes matrix _interactionBlocks[inter1][inter2] (and allocates memory if
// necessary) if inter1 and inter2 have commond DynamicalSystem. How
// _interactionBlocks are computed depends explicitely on the type of
// Relation of each Interaction.
// Warning: we suppose that at this point, all non linear
// operators (G for lagrangian relation for example) have been
// computed through plug-in mechanism.
// Get the W and Theta maps of one of the Interaction -
// Warning: in the current version, if OSI!=MoreauJeanOSI, this fails.
// If OSI = MOREAU, centralInteractionBlocks = W if OSI = LSODAR,
// centralInteractionBlocks = M (mass matrices)
SP::SiconosMatrix leftInteractionBlock, rightInteractionBlock, leftInteractionBlock1;
// General form of the interactionBlock is : interactionBlock =
// a*extraInteractionBlock + b * leftInteractionBlock * centralInteractionBlocks
// * rightInteractionBlock a and b are scalars, centralInteractionBlocks a
// matrix depending on the integrator (and on the DS), the
// simulation type ... left, right and extra depend on the relation
// type and the non smooth law.
VectorOfSMatrices& workMInter = *indexSet->properties(vd).workMatrices;
currentInteractionBlock->zero();
// loop over the common DS
bool endl = false;
unsigned int pos = pos1;
for (SP::DynamicalSystem ds = DS1; !endl; ds = DS2)
{
assert(ds == DS1 || ds == DS2);
endl = (ds == DS2);
if (Type::value(*ds) == Type::LagrangianLinearTIDS ||
Type::value(*ds) == Type::LagrangianDS)
{
if (inter->relation()->getType() != Lagrangian)
{
RuntimeException::selfThrow(
"MLCPProjectOnConstraints::computeDiagonalInteractionBlock - relation is not of type Lagrangian with a LagrangianDS.");
}
SP::LagrangianDS lds = (std11::static_pointer_cast<LagrangianDS>(ds));
unsigned int sizeDS = lds->getDim();
leftInteractionBlock.reset(new SimpleMatrix(sizeY, sizeDS));
inter->getLeftInteractionBlockForDS(pos, leftInteractionBlock, workMInter);
if (lds->boundaryConditions()) // V.A. Should we do that ?
//.........这里部分代码省略.........