本文整理汇总了C++中peano::grid::VertexEnumerator::getVertexPosition方法的典型用法代码示例。如果您正苦于以下问题:C++ VertexEnumerator::getVertexPosition方法的具体用法?C++ VertexEnumerator::getVertexPosition怎么用?C++ VertexEnumerator::getVertexPosition使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类peano::grid::VertexEnumerator
的用法示例。
在下文中一共展示了VertexEnumerator::getVertexPosition方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
void peanoclaw::mappings::ValidateGrid::destroyCell(
const peanoclaw::Cell& fineGridCell,
peanoclaw::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
peanoclaw::Vertex * const coarseGridVertices,
const peano::grid::VertexEnumerator& coarseGridVerticesEnumerator,
peanoclaw::Cell& coarseGridCell,
const tarch::la::Vector<DIMENSIONS,int>& fineGridPositionOfCell
) {
logTraceInWith4Arguments( "destroyCell(...)", fineGridCell, fineGridVerticesEnumerator.toString(), coarseGridCell, fineGridPositionOfCell );
//TODO unterweg debug
// std::cout<< "Destroying cell " << fineGridVerticesEnumerator.getVertexPosition(0) << ", "
// << fineGridVerticesEnumerator.getCellSize()
// << ", index=" << fineGridCell.getCellDescriptionIndex()
// #ifdef Parallel
// << ", rank=" << tarch::parallel::Node::getInstance().getRank()
// #endif
// << std::endl;
_validator.deletePatchIfNotRemote(
fineGridVerticesEnumerator.getVertexPosition(0),
fineGridVerticesEnumerator.getLevel()
);
logTraceOutWith1Argument( "destroyCell(...)", fineGridCell );
}
示例2: assertion
void particles::pit::adapters::MoveParticlesAndPlot2VTKGridVisualiser_0::leaveCell(
particles::pit::Cell& fineGridCell,
particles::pit::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
particles::pit::Vertex * const coarseGridVertices,
const peano::grid::VertexEnumerator& coarseGridVerticesEnumerator,
particles::pit::Cell& coarseGridCell,
const tarch::la::Vector<DIMENSIONS,int>& fineGridPositionOfCell
) {
#ifdef Parallel
if (fineGridCell.isLeaf() && !fineGridCell.isAssignedToRemoteRank()) {
#else
if (fineGridCell.isLeaf()) {
#endif
assertion( DIMENSIONS==2 || DIMENSIONS==3 );
int vertexIndex[TWO_POWER_D];
dfor2(i)
tarch::la::Vector<DIMENSIONS,double> currentVertexPosition = fineGridVerticesEnumerator.getVertexPosition(i);
assertion2 ( _vertex2IndexMap.find(currentVertexPosition) != _vertex2IndexMap.end(), currentVertexPosition, fineGridVertices[ fineGridVerticesEnumerator(i) ].toString() );
vertexIndex[iScalar] = _vertex2IndexMap[currentVertexPosition];
enddforx
int cellIndex;
if (DIMENSIONS==2) {
cellIndex = _cellWriter->plotQuadrangle(vertexIndex);
}
if (DIMENSIONS==3) {
cellIndex = _cellWriter->plotHexahedron(vertexIndex);
}
_cellStateWriter->plotCell(cellIndex,fineGridVerticesEnumerator.getCellFlags());
_cellNormWriterX->plotCell(cellIndex,(fineGridCell.getMyNorm())[0]);
_cellNormWriterY->plotCell(cellIndex,(fineGridCell.getMyNorm())[1]);
}
}
void particles::pit::adapters::MoveParticlesAndPlot2VTKGridVisualiser_0::beginIteration(
particles::pit::State& solverState
) {
assertion( _vtkWriter==0 );
_vtkWriter = new tarch::plotter::griddata::unstructured::vtk::VTKTextFileWriter();
_vertexWriter = _vtkWriter->createVertexWriter();
_cellWriter = _vtkWriter->createCellWriter();
_vertexTypeWriter = _vtkWriter->createVertexDataWriter(particles::pit::Vertex::Records::getInsideOutsideDomainMapping()+"/Hanging=-1" ,1);
_vertexRefinementControlWriter = _vtkWriter->createVertexDataWriter(particles::pit::Vertex::Records::getRefinementControlMapping() ,1);
_vertexAdjacentCellsHeight = _vtkWriter->createVertexDataWriter( peano::grid::getCellFlagsLegend(),1);
_cellStateWriter = _vtkWriter->createCellDataWriter( "cell-flag(>=-1=stationary,-1=parallel-boundary,<=-2=not-stationary" ,1);
_cellNormWriterX = _vtkWriter->createCellDataWriter( "Norm,X-direction" ,1);
_cellNormWriterY = _vtkWriter->createCellDataWriter( "Norm,Y-direction" ,1);
}
示例3: logInfo
void peanoclaw::mappings::ValidateGrid::createCell(
peanoclaw::Cell& fineGridCell,
peanoclaw::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
peanoclaw::Vertex * const coarseGridVertices,
const peano::grid::VertexEnumerator& coarseGridVerticesEnumerator,
peanoclaw::Cell& coarseGridCell,
const tarch::la::Vector<DIMENSIONS,int>& fineGridPositionOfCell
) {
logTraceInWith4Arguments( "createCell(...)", fineGridCell, fineGridVerticesEnumerator.toString(), coarseGridCell, fineGridPositionOfCell );
//TODO unterweg debug
logInfo("", "Creating cell " << fineGridVerticesEnumerator.getVertexPosition(0) << ", "
<< fineGridVerticesEnumerator.getCellSize()
<< ", index=" << fineGridCell.getCellDescriptionIndex()
<< ",level=" << fineGridVerticesEnumerator.getLevel()
);
logTraceOutWith1Argument( "createCell(...)", fineGridCell );
}
示例4: computeMaxRelativeError
void particles::pit::myfunctions::CoordinatesRepresentationChange::ascend(
particles::pit::Cell * const fineGridCells,
particles::pit::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
particles::pit::Vertex * const coarseGridVertices,
const peano::grid::VertexEnumerator& coarseGridVerticesEnumerator,
particles::pit::Cell& coarseGridCell
) {
dfor3(k)
particles::pit::Cell fineGridCell = fineGridCells[ fineGridVerticesEnumerator.cell(k) ];
const tarch::la::Vector<DIMENSIONS,double> cellOffset = fineGridVerticesEnumerator.getVertexPosition(k);
const tarch::la::Vector<DIMENSIONS,double> MeanCoordinate = fineGridCell.getMeanCoordinate();
bool isLeaf = fineGridCell.isLeaf();
const int cellIndex = fineGridCell.getCellIndex();
const int NumberOfParticles = ParticleHeap::getInstance().getData(cellIndex).size();
if( isLeaf && NumberOfParticles>1 ) {
// Compute Max-Norm
double maxRelativeError = computeMaxRelativeError( fineGridCell );
// Save maximal maxRelativeError in _globalMaxRelativeError
if (_globalMaxRelativeError < maxRelativeError) {
_globalMaxRelativeError = maxRelativeError;
}
double maxError = computeMaxError( fineGridCell );
if(_global_max_error < maxError) {
_global_max_error = maxError;
}
double maxOffset = computeMaxOffset( fineGridCell );
// Compute RMSD
tarch::la::Vector<DIMENSIONS,double> rmsd = computeRMSD( fineGridCell );
// Computer L2-Norm
tarch::la::Vector<DIMENSIONS,double> l2ErrorNorm = computeL2ErrorNorm( fineGridCell );
tarch::la::Vector<DIMENSIONS,double> l2Norm = computeL2Norm( fineGridCell );
// Save maximal l2ErrorNorm in _globalMaxL2ErrorNorm
for(int d = 0; d<DIMENSIONS; d++) {
if(_globalMaxL2ErrorNorm < l2ErrorNorm[d]) {
_globalMaxL2ErrorNorm = l2ErrorNorm[d];
}
}
// Add l2Norm to _globalL2Norm
_globalL2ErrorNorm += l2ErrorNorm;
// Don't forget to increment _globalNormAdditions to divide _globalL2Norm by it
// at the end of iteration before writing it in the file!
++_globalNormAdditions;
//std::cout << "_globalNormAdditions: " << _globalNormAdditions << std::endl;
// Output for checking
//printParticlesInfo( fineGridCell, "maxError", maxError );
_maxRelativeErrorOut << maxRelativeError << " ";
_maxErrorOut << maxError << " ";
_maxOffsetOut << maxOffset << " ";
// Histogram process
l2_error_norm_histogram_->processHistogram(l2ErrorNorm);
max_error_norm_histogram_->processHistogram(maxError);
max_offset_norm_histogram_->processHistogram(maxOffset);
for(int d=0; d<DIMENSIONS; d++) {
_RMSDOut << rmsd[d] << " ";
_L2ErrorNormOut << l2ErrorNorm[d] << " ";
_L2NormOut << l2Norm[d] << " ";
_MeanCoordinateOut << MeanCoordinate[d] << " ";
}
for(int d=0; d<DIMENSIONS; d++) {
_maxRelativeErrorOut << cellOffset[d] << " ";
_maxErrorOut << cellOffset[d] << " ";
_maxOffsetOut << cellOffset[d] << " ";
_RMSDOut << cellOffset[d] << " ";
_L2ErrorNormOut << cellOffset[d] << " ";
_L2NormOut << cellOffset[d] << " ";
_MeanCoordinateOut << cellOffset[d] << " ";
}
_maxRelativeErrorOut << std::endl;
_maxErrorOut << std::endl;
_maxOffsetOut << std::endl;
_RMSDOut << std::endl;
_L2ErrorNormOut << std::endl;
_L2NormOut << std::endl;
_MeanCoordinateOut << std::endl;
}
enddforx
}
示例5: computeMaxRelativeError
void particles::pit::myfunctions::RepresentationChange::ascend(
particles::pit::Cell * const fineGridCells,
particles::pit::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
particles::pit::Vertex * const coarseGridVertices,
const peano::grid::VertexEnumerator& coarseGridVerticesEnumerator,
particles::pit::Cell& coarseGridCell
) {
particles::pit::myfunctions::CoordinatesRepresentationChange::ascend(
fineGridCells,
fineGridVertices,
fineGridVerticesEnumerator,
coarseGridVertices,
coarseGridVerticesEnumerator,
coarseGridCell);
dfor3(k)
particles::pit::Cell fineGridCell = fineGridCells[ fineGridVerticesEnumerator.cell(k) ];
const tarch::la::Vector<DIMENSIONS,double> cellOffset = fineGridVerticesEnumerator.getVertexPosition(k);
const tarch::la::Vector<DIMENSIONS,double> meanVelocity = fineGridCell.getMeanVelocity();
bool isLeaf = fineGridCell.isLeaf();
const int cellIndex = fineGridCell.getCellIndex();
const int NumberOfParticles = ParticleHeap::getInstance().getData(cellIndex).size();
if( isLeaf && NumberOfParticles>1 ) {
// Compute Max-Norm
double maxRelativeError = computeMaxRelativeError( fineGridCell );
// Save maximal maxRelativeError in _globalMaxRelativeError
if (_globalMaxRelativeError < maxRelativeError) {
_globalMaxRelativeError = maxRelativeError;
}
double maxError = computeMaxError( fineGridCell );
if(_global_max_error < maxError) {
_global_max_error = maxError;
}
double maxOffset = computeMaxOffset( fineGridCell );
double minOffset = computeMinOffset( fineGridCell );
if(_globalMaxOffset < maxOffset) {
_globalMaxOffset = maxOffset;
}
// Compute RMSD
tarch::la::Vector<DIMENSIONS,double> rmsd = computeRMSD( fineGridCell );
// Computer L2-Norm
tarch::la::Vector<DIMENSIONS,double>
l2ErrorNorm = computeL2ErrorNorm( fineGridCell );
tarch::la::Vector<DIMENSIONS,double>
l2Norm = computeL2Norm( fineGridCell );
//std::cout << "ascend() l2ErrorNorm: " << l2ErrorNorm << std::endl;
// Save maximal l2ErrorNorm in _globalMaxL2ErrorNorm
for(int d = 0; d<DIMENSIONS; d++) {
if(_globalMaxL2ErrorNorm < l2ErrorNorm[d]) {
_globalMaxL2ErrorNorm = l2ErrorNorm[d];
}
}
// Add l2ErrorNorm to _globalL2ErrorNorm
_globalL2ErrorNorm += l2ErrorNorm;
// Add l2Norm to _globalL2OffsetNorm
_globalL2OffsetNorm += l2Norm;
// Don't forget to increment _globalNormAdditions to divide _globalL2Norm
//by it at the end of iteration before writing it in the file!
++_globalNormAdditions;
// Output for checking
if(VERBOSE) {
printParticlesInfo( fineGridCell, "l2ErrorNorm", l2ErrorNorm );
}
/* All computations put in output */
_maxRelativeErrorOut << maxRelativeError << " ";
_maxErrorOut << maxError << " ";
_maxOffsetOut << maxOffset << " ";
_minOffsetOut << minOffset << " ";
// Histogram process
l2_error_norm_histogram_->processHistogram(l2ErrorNorm);
max_error_norm_histogram_->processHistogram(maxError);
max_offset_norm_histogram_->processHistogram(maxOffset);
for(int d=0; d<DIMENSIONS; d++) {
_RMSDOut << rmsd[d] << " ";
_L2ErrorNormOut << l2ErrorNorm[d] << " ";
_L2NormOut << l2Norm[d] << " ";
_meanVelocityOut << meanVelocity[d] << " ";
}
/* Write coordinates of each cell near the value of the Norm(offset) */
for(int d=0; d<DIMENSIONS; d++) {
_maxRelativeErrorOut << cellOffset[d] << " ";
_maxErrorOut << cellOffset[d] << " ";
_maxOffsetOut << cellOffset[d] << " ";
_minOffsetOut << cellOffset[d] << " ";
_RMSDOut << cellOffset[d] << " ";
_L2ErrorNormOut << cellOffset[d] << " ";
_L2NormOut << cellOffset[d] << " ";
_meanVelocityOut << cellOffset[d] << " ";
}
/* Put the new line character to have one cell per line */
_maxRelativeErrorOut << std::endl;
//.........这里部分代码省略.........
示例6: parallelSubgrid
void peanoclaw::interSubgridCommunication::GridLevelTransfer::stepUp(
Patch* coarseSubgrid,
Patch& finePatch,
ParallelSubgrid& fineParallelSubgrid,
bool isPeanoCellLeaf,
peanoclaw::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator
) {
//Correct time intervals for virtual subgrid or going-to-be virtual subgrid
if(!finePatch.isLeaf() || !isPeanoCellLeaf) {
finePatch.switchValuesAndTimeIntervalToMinimalFineGridTimeInterval();
assertion1(tarch::la::greaterEquals(finePatch.getTimeIntervals().getTimestepSize(), 0) || !isPeanoCellLeaf, finePatch);
}
//Update fine grid time interval on next coarser patch if possible
if(coarseSubgrid != 0) {
//Patch coarsePatch(coarseCellDescriptionIndex);
coarseSubgrid->getTimeIntervals().updateMinimalFineGridTimeInterval(
finePatch.getTimeIntervals().getCurrentTime(),
finePatch.getTimeIntervals().getTimestepSize()
);
}
if(finePatch.isLeaf()) {
restrictToOverlappingVirtualSubgrids(finePatch, fineParallelSubgrid);
//TODO unterweg dissertation:
//If the patch is leaf, but the Peano cell is not, it got refined.
//Thus, the patch was not turned to a virtual patch to avoid
//restriction to this patch, which would lead to invalid data, since
//the patch is not initialized with zeros. So, the patch needs to
//be switched to refined (i.e. non-virtual) here...
if(!isPeanoCellLeaf) {
finePatch.switchToVirtual();
//Fill ghostlayer
for(int i = 0; i < TWO_POWER_D; i++) {
fineGridVertices[fineGridVerticesEnumerator(i)].fillAdjacentGhostLayers(
finePatch.getLevel(),
_useDimensionalSplitting,
_numerics,
#ifdef PEANOCLAW_USE_ASCEND_FOR_RESTRICTION
tarch::la::multiplyComponents(peano::utils::dDelinearised(i, 2).convertScalar<double>(), finePatch.getSize()) + finePatch.getPosition(),
#else
fineGridVerticesEnumerator.getVertexPosition(i),
#endif
_subgridStatistics
);
}
finePatch.switchToNonVirtual();
ParallelSubgrid parallelSubgrid(finePatch);
parallelSubgrid.markCurrentStateAsSent(false);
}
} else if (finePatch.isVirtual()) {
finalizeVirtualSubgrid(
finePatch,
fineGridVertices,
fineGridVerticesEnumerator,
isPeanoCellLeaf
);
}
//If patch wasn't refined -> look if veto for coarsening is necessary
if(!finePatch.isLeaf()) {
vetoCoarseningIfNecessary(
finePatch,
fineGridVertices,
fineGridVerticesEnumerator
);
}
//Reset time constraint for optimization of ghostlayer filling
// finePatch.resetMinimalNeighborTimeConstraint();
}
示例7: switchToAndAddVirtualSubgrid
void peanoclaw::interSubgridCommunication::GridLevelTransfer::stepDown(
Patch* coarseSubgrid,
Patch& fineSubgrid,
peanoclaw::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
bool isInitializing,
bool isPeanoCellLeaf
) {
//Switch to virtual subgrid if necessary
if(shouldBecomeVirtualSubgrid(
fineSubgrid,
fineGridVertices,
fineGridVerticesEnumerator,
isInitializing,
isPeanoCellLeaf
)) {
switchToAndAddVirtualSubgrid(fineSubgrid);
} else if(fineSubgrid.isVirtual()) {
//Switch to non-virtual if still virtual
fineSubgrid.switchToNonVirtual();
}
//Prepare flags for subgrid
if(!fineSubgrid.isLeaf()) {
fineSubgrid.setWillCoarsen(peano::grid::aspects::VertexStateAnalysis::doesOneVertexCarryRefinementFlag
(
fineGridVertices,
fineGridVerticesEnumerator,
peanoclaw::records::Vertex::Erasing
)
);
}
fineSubgrid.getTimeIntervals().resetMinimalNeighborTimeConstraint();
fineSubgrid.getTimeIntervals().resetMaximalNeighborTimeInterval();
fineSubgrid.resetNeighboringGhostlayerBounds();
fineSubgrid.getTimeIntervals().resetMinimalFineGridTimeInterval();
//Get data from neighbors:
// - Ghostlayers data
// - Ghostlayer bounds
// - Neighbor times
for(int i = 0; i < TWO_POWER_D; i++) {
assertion1(fineSubgrid.getCellDescriptionIndex() != -1, fineSubgrid);
fineGridVertices[fineGridVerticesEnumerator(i)].setAdjacentCellDescriptionIndex(i, fineSubgrid.getCellDescriptionIndex());
fineGridVertices[fineGridVerticesEnumerator(i)].fillAdjacentGhostLayers(
fineGridVerticesEnumerator.getLevel(),
_useDimensionalSplitting,
_numerics,
fineGridVerticesEnumerator.getVertexPosition(peano::utils::dDelinearised(i, 2)),
_subgridStatistics,
// fineGridVerticesEnumerator.getVertexPosition(i),
i
);
}
//Data from coarse patch:
// -> Update minimal time constraint of coarse neighbors
if(coarseSubgrid != 0) {
//Patch coarsePatch(coarseCellDescriptionIndex);
if(coarseSubgrid->getTimeIntervals().shouldFineGridsSynchronize()) {
//Set time constraint of fine grid to time of coarse grid to synch
//on that time.
fineSubgrid.getTimeIntervals().updateMinimalNeighborTimeConstraint(
coarseSubgrid->getTimeIntervals().getCurrentTime() + coarseSubgrid->getTimeIntervals().getTimestepSize(),
coarseSubgrid->getCellDescriptionIndex()
);
}
}
}
示例8: virtualPatch
void peanoclaw::interSubgridCommunication::GridLevelTransfer::finalizeVirtualSubgrid(
Patch& subgrid,
peanoclaw::Vertex * const fineGridVertices,
const peano::grid::VertexEnumerator& fineGridVerticesEnumerator,
bool isPeanoCellLeaf
) {
tarch::multicore::Lock lock(_virtualPatchListSemaphore);
assertion1(_virtualPatchDescriptionIndices.size() >= 0, subgrid.toString());
tarch::la::Vector<DIMENSIONS_PLUS_ONE, double> virtualSubgridKey = createVirtualSubgridKey(subgrid.getPosition(), subgrid.getLevel());
int virtualPatchDescriptionIndex = _virtualPatchDescriptionIndices[virtualSubgridKey];
_virtualPatchDescriptionIndices.erase(virtualSubgridKey);
// _virtualPatchTimeConstraints.erase(virtualSubgridKey);
CellDescription& virtualPatchDescription = CellDescriptionHeap::getInstance().getData(virtualPatchDescriptionIndex).at(0);
Patch virtualPatch(virtualPatchDescription);
//Assert that we're working on the correct virtual patch
assertionEquals3(subgrid.getCellDescriptionIndex(), virtualPatchDescriptionIndex, subgrid, virtualPatch, _virtualPatchDescriptionIndices.size());
assertionNumericalEquals(subgrid.getPosition(), virtualPatch.getPosition());
assertionNumericalEquals(subgrid.getSize(), virtualPatch.getSize());
assertionEquals(subgrid.getLevel(), virtualPatch.getLevel());
assertionEquals(subgrid.getUIndex(), virtualPatch.getUIndex());
// assertionEquals(finePatch.getUOldIndex(), virtualPatch.getUOldIndex());
#ifndef PEANOCLAW_USE_ASCEND_FOR_RESTRICTION
_numerics.postProcessRestriction(subgrid, !subgrid.willCoarsen());
#endif
//Fill ghostlayer
for(int i = 0; i < TWO_POWER_D; i++) {
fineGridVertices[fineGridVerticesEnumerator(i)].fillAdjacentGhostLayers(
subgrid.getLevel(),
_useDimensionalSplitting,
_numerics,
#ifdef PEANOCLAW_USE_ASCEND_FOR_RESTRICTION
tarch::la::multiplyComponents(peano::utils::dDelinearised(i, 2).convertScalar<double>(), subgrid.getSize()) + subgrid.getPosition(),
#else
fineGridVerticesEnumerator.getVertexPosition(i),
#endif
_subgridStatistics
);
}
//Switch to leaf or non-virtual
if(isPeanoCellLeaf) {
assertion1(tarch::la::greaterEquals(subgrid.getTimeIntervals().getTimestepSize(), 0.0), subgrid);
subgrid.switchToLeaf();
_numerics.update(subgrid);
ParallelSubgrid parallelSubgrid(subgrid);
parallelSubgrid.markCurrentStateAsSent(false);
} else {
if(!isPatchAdjacentToRemoteRank(
fineGridVertices,
fineGridVerticesEnumerator
)) {
subgrid.switchToNonVirtual();
}
}
assertion1(!subgrid.isVirtual()
|| isPatchAdjacentToRemoteRank(
fineGridVertices,
fineGridVerticesEnumerator),
subgrid);
}
示例9: logTraceOut
void peanoclaw::mappings::ValidateGrid::prepareSendToMaster(
peanoclaw::Cell& localCell,
peanoclaw::Vertex * vertices,
const peano::grid::VertexEnumerator& verticesEnumerator,
const peanoclaw::Vertex * const coarseGridVertices,
const peano::grid::VertexEnumerator& coarseGridVerticesEnumerator,
const peanoclaw::Cell& coarseGridCell,
const tarch::la::Vector<DIMENSIONS,int>& fineGridPositionOfCell
) {
logTraceInWith2Arguments( "prepareSendToMaster(...)", localCell, verticesEnumerator.toString() );
//Assemble vector to send to master
std::vector<PatchDescription>& workerAndLocalData = PatchDescriptionHeap::getInstance().getData(_patchDescriptionsIndex);
std::vector<PatchDescription> localData = _validator.getAllPatches();
for(int i = 0; i < (int)localData.size(); i++) {
//TODO unterweg debug
// assertion(localData[i].getIsReferenced());
workerAndLocalData.push_back(localData[i]);
}
// for(size_t i = 0; i < PatchDescriptionHeap::getInstance().getData(_patchDescriptionsIndex).size(); i++) {
// //TODO unterweg debug
//// logError("", "Prepare Send to " << tarch::parallel::NodePool::getInstance().getMasterRank() << " -- " << i << ": " << PatchDescriptionHeap::getInstance().getData(_patchDescriptionsIndex)[i].toString());
// assertion(PatchDescriptionHeap::getInstance().getData(_patchDescriptionsIndex)[i].getIsReferenced());
// }
//Add non-referenced patches
// int index = 0;
// int numberOfEntries = 0;
// while(numberOfEntries < CellDescriptionHeap::getInstance().getNumberOfAllocatedEntries()) {
// if(CellDescriptionHeap::getInstance().isValidIndex(index)) {
// if(_descriptions.find(index) == _descriptions.end()) {
// //Found non-referenced patch
// CellDescription& cellDescription = CellDescriptionHeap::getInstance().getData(index).at(0);
// PatchDescription patchDescription;
// patchDescription.setPosition(cellDescription.getPosition());
// patchDescription.setSize(cellDescription.getSize());
// patchDescription.setLevel(cellDescription.getLevel());
// patchDescription.setIsRemote(cellDescription.getIsRemote());
// patchDescription.setIsReferenced(false);
// patchDescription.setCellDescriptionIndex(index);
// patchDescription.setRank(tarch::parallel::Node::getInstance().getRank());
// descriptionVector.push_back(patchDescription);
// }
// numberOfEntries++;
// }
// index++;
// }
//Send
PatchDescriptionHeap::getInstance().sendData(
_patchDescriptionsIndex,
tarch::parallel::NodePool::getInstance().getMasterRank(),
verticesEnumerator.getVertexPosition(0),
verticesEnumerator.getLevel(),
peano::heap::MasterWorkerCommunication
);
#ifdef Parallel
PatchDescriptionHeap::getInstance().finishedToSendSynchronousData();
#endif
logTraceOut( "prepareSendToMaster(...)" );
}