当前位置: 首页>>代码示例>>C++>>正文


C++ PCLVisualizer::spin方法代码示例

本文整理汇总了C++中pcl::visualization::PCLVisualizer::spin方法的典型用法代码示例。如果您正苦于以下问题:C++ PCLVisualizer::spin方法的具体用法?C++ PCLVisualizer::spin怎么用?C++ PCLVisualizer::spin使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在pcl::visualization::PCLVisualizer的用法示例。


在下文中一共展示了PCLVisualizer::spin方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: runtime_error

int
main (int argc, char *argv[])
{
  std::string pcd_file;

  if (argc > 1)
  {
    pcd_file = argv[1];
  }
  else
  {
    printf ("\nUsage: pcl_example_nurbs_fitting_curve pcd-file \n\n");
    printf ("  pcd-file    point-cloud file\n");
    exit (0);
  }

  // #################### LOAD FILE #########################
  printf ("  loading %s\n", pcd_file.c_str ());
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  pcl::PCLPointCloud2 cloud2;

  if (pcl::io::loadPCDFile (pcd_file, cloud2) == -1)
    throw std::runtime_error ("  PCD file not found.");

  fromPCLPointCloud2 (cloud2, *cloud);

  // convert to NURBS data structure
  pcl::on_nurbs::NurbsDataCurve2d data;
  PointCloud2Vector2d (cloud, data.interior);

  viewer.setSize (800, 600);
  viewer.addPointCloud<pcl::PointXYZ> (cloud, "cloud");

  // #################### CURVE PARAMETERS #########################
  unsigned order (3);
  unsigned n_control_points (10);

  pcl::on_nurbs::FittingCurve2d::Parameter curve_params;
  curve_params.smoothness = 0.000001;
  curve_params.rScale = 1.0;

  // #################### CURVE FITTING #########################
  ON_NurbsCurve curve = pcl::on_nurbs::FittingCurve2d::initNurbsPCA (order, &data, n_control_points);

  pcl::on_nurbs::FittingCurve2d fit (&data, curve);
  fit.assemble (curve_params);

  Eigen::Vector2d fix1 (0.1, 0.1);
  Eigen::Vector2d fix2 (1.0, 0.0);
//  fit.addControlPointConstraint (0, fix1, 100.0);
//  fit.addControlPointConstraint (curve.CVCount () - 1, fix2, 100.0);

  fit.solve ();

  // visualize
  VisualizeCurve (fit.m_nurbs, 1.0, 0.0, 0.0, true);
  viewer.spin ();

  return 0;
}
开发者ID:2php,项目名称:pcl,代码行数:60,代码来源:example_nurbs_fitting_curve2d.cpp

示例2: cloud

int
  main (int argc, char** argv)
{
  //pcl::PointCloud<pcl::PointXYZ> cloud;

  // Read Kinect live stream:
  PointCloudT cloud_obj;
  PointCloudT::Ptr cloud (new PointCloudT);
  bool new_cloud_available_flag = false;
  pcl::Grabber* interface = new pcl::OpenNIGrabber();
  boost::function<void (const PointCloudT::ConstPtr&)> f =
        boost::bind (&cloud_cb_, _1, &cloud_obj, &new_cloud_available_flag);
  interface->registerCallback (f);
  interface->start ();

  // Wait for the first frame:
  while(!new_cloud_available_flag) 
    boost::this_thread::sleep(boost::posix_time::milliseconds(1));
  pcl::copyPointCloud<PointT, PointT>(cloud_obj, *cloud);
  new_cloud_available_flag = false;

  // Display pointcloud:
  pcl::visualization::PointCloudColorHandlerRGBField<PointT> rgb(cloud);
  viewer.addPointCloud<PointT> (cloud, rgb, "input_cloud");
  viewer.setCameraPosition(0,0,-2,0,-1,0,0);

  /*
  // Add point picking callback to viewer:
  struct callback_args cb_args;
  PointCloudT::Ptr clicked_points_3d (new PointCloudT);
  cb_args.clicked_points_3d = clicked_points_3d;
  cb_args.viewerPtr = pcl::visualization::PCLVisualizer::Ptr(&viewer);
  viewer.registerPointPickingCallback (pp_callback, (void*)&cb_args);
  std::cout << "Shift+click on three floor points, then press 'Q'..." << std::endl;
  */

  // Spin until 'Q' is pressed (to allow ground manual initialization):
  viewer.spin();
  std::cout << "done." << std::endl;

  pcl::io::savePCDFileASCII ("/home/igor/pcds/pcd_grabber_out_1.pcd", *cloud);
  std::cerr << "Saved " << (*cloud).points.size () << " data points to pcd_grabber_out_1.pcd." << std::endl;

  /*
  for (size_t i = 0; i < cloud.points.size (); ++i)
    std::cerr << "    " << cloud.points[i].x << " " << cloud.points[i].y << " " << cloud.points[i].z << std::endl;
  */

  while (!viewer.wasStopped ())
  {
    boost::this_thread::sleep (boost::posix_time::microseconds (100));
  }

  return (0);
}
开发者ID:igor-nap,项目名称:cv-pose-detection,代码行数:55,代码来源:pcd_grabber.cpp

示例3: main

int main (int argc, char** argv)
{
  if(pcl::console::find_switch (argc, argv, "--help") || pcl::console::find_switch (argc, argv, "-h"))
        return print_help();

  // Algorithm parameters:
  std::string svm_filename = "../../people/data/trainedLinearSVMForPeopleDetectionWithHOG.yaml";
  float min_confidence = -1.5;
  float min_height = 1.3;
  float max_height = 2.3;
  float voxel_size = 0.06;
  Eigen::Matrix3f rgb_intrinsics_matrix;
  rgb_intrinsics_matrix << 525, 0.0, 319.5, 0.0, 525, 239.5, 0.0, 0.0, 1.0; // Kinect RGB camera intrinsics

  // Read if some parameters are passed from command line:
  pcl::console::parse_argument (argc, argv, "--svm", svm_filename);
  pcl::console::parse_argument (argc, argv, "--conf", min_confidence);
  pcl::console::parse_argument (argc, argv, "--min_h", min_height);
  pcl::console::parse_argument (argc, argv, "--max_h", max_height);

  // Read Kinect live stream:
  PointCloudT::Ptr cloud (new PointCloudT);
  bool new_cloud_available_flag = false;
  pcl::Grabber* interface = new pcl::OpenNIGrabber();
  boost::function<void (const pcl::PointCloud<pcl::PointXYZRGBA>::ConstPtr&)> f =
      boost::bind (&cloud_cb_, _1, cloud, &new_cloud_available_flag);
  interface->registerCallback (f);
  interface->start ();

  // Wait for the first frame:
  while(!new_cloud_available_flag) 
    boost::this_thread::sleep(boost::posix_time::milliseconds(1));
  new_cloud_available_flag = false;

  cloud_mutex.lock ();    // for not overwriting the point cloud

  // Display pointcloud:
  pcl::visualization::PointCloudColorHandlerRGBField<PointT> rgb(cloud);
  viewer.addPointCloud<PointT> (cloud, rgb, "input_cloud");
  viewer.setCameraPosition(0,0,-2,0,-1,0,0);

  // Add point picking callback to viewer:
  struct callback_args cb_args;
  PointCloudT::Ptr clicked_points_3d (new PointCloudT);
  cb_args.clicked_points_3d = clicked_points_3d;
  cb_args.viewerPtr = pcl::visualization::PCLVisualizer::Ptr(&viewer);
  viewer.registerPointPickingCallback (pp_callback, (void*)&cb_args);
  std::cout << "Shift+click on three floor points, then press 'Q'..." << std::endl;

  // Spin until 'Q' is pressed:
  viewer.spin();
  std::cout << "done." << std::endl;
  
  cloud_mutex.unlock ();    

  // Ground plane estimation:
  Eigen::VectorXf ground_coeffs;
  ground_coeffs.resize(4);
  std::vector<int> clicked_points_indices;
  for (unsigned int i = 0; i < clicked_points_3d->points.size(); i++)
    clicked_points_indices.push_back(i);
  pcl::SampleConsensusModelPlane<PointT> model_plane(clicked_points_3d);
  model_plane.computeModelCoefficients(clicked_points_indices,ground_coeffs);
  std::cout << "Ground plane: " << ground_coeffs(0) << " " << ground_coeffs(1) << " " << ground_coeffs(2) << " " << ground_coeffs(3) << std::endl;

  // Initialize new viewer:
  pcl::visualization::PCLVisualizer viewer("PCL Viewer");          // viewer initialization
  viewer.setCameraPosition(0,0,-2,0,-1,0,0);

  // Create classifier for people detection:  
  pcl::people::PersonClassifier<pcl::RGB> person_classifier;
  person_classifier.loadSVMFromFile(svm_filename);   // load trained SVM

  // People detection app initialization:
  pcl::people::GroundBasedPeopleDetectionApp<PointT> people_detector;    // people detection object
  people_detector.setVoxelSize(voxel_size);                        // set the voxel size
  people_detector.setIntrinsics(rgb_intrinsics_matrix);            // set RGB camera intrinsic parameters
  people_detector.setClassifier(person_classifier);                // set person classifier
  people_detector.setHeightLimits(min_height, max_height);         // set person classifier
//  people_detector.setSensorPortraitOrientation(true);             // set sensor orientation to vertical

  // For timing:
  static unsigned count = 0;
  static double last = pcl::getTime ();

  // Main loop:
  while (!viewer.wasStopped())
  {
    if (new_cloud_available_flag && cloud_mutex.try_lock ())    // if a new cloud is available
    {
      new_cloud_available_flag = false;

      // Perform people detection on the new cloud:
      std::vector<pcl::people::PersonCluster<PointT> > clusters;   // vector containing persons clusters
      people_detector.setInputCloud(cloud);
      people_detector.setGround(ground_coeffs);                    // set floor coefficients
      people_detector.compute(clusters);                           // perform people detection

      ground_coeffs = people_detector.getGround();                 // get updated floor coefficients

//.........这里部分代码省略.........
开发者ID:dalek7,项目名称:Algorithms,代码行数:101,代码来源:main_ground_based_people_detection.cpp

示例4: runtime_error

int
main (int argc, char *argv[])
{
  std::string pcd_file;

  if (argc > 1)
  {
    pcd_file = argv[1];
  }
  else
  {
    printf ("\nUsage: boundaryFittingPDM pcd-file \n\n");
    printf ("  pcd-file    point-cloud file containing the boundary points (xy)\n");
    exit (0);
  }

  // #################### LOAD FILE #########################
  printf ("  loading %s\n", pcd_file.c_str ());
  pcl::PointCloud<pcl::PointXYZ>::Ptr cloud (new pcl::PointCloud<pcl::PointXYZ>);
  sensor_msgs::PointCloud2 cloud2;

  if (pcl::io::loadPCDFile (pcd_file, cloud2) == -1)
    throw std::runtime_error ("  PCD file not found.");

  fromROSMsg (cloud2, *cloud);

  viewer.setSize (800, 600);
  viewer.addPointCloud<pcl::PointXYZ> (cloud, "cloud");

  pcl::on_nurbs::NurbsDataCurve2d data;
  PointCloud2Vector2d (cloud, data.interior);

  // #################### CURVE PARAMETERS #########################
  unsigned order (3);
  unsigned n_control_points (20);

  pcl::on_nurbs::FittingCurve2d::FitParameter curve_params;
  curve_params.addCPsAccuracy = 1000;   // no control points added
  curve_params.addCPsIteration = 1000;  // no control points added
  curve_params.maxCPs = 1000;
  curve_params.fitMaxError = 1e-6;
  curve_params.fitAvgError = 1e-8;
  curve_params.fitMaxSteps = 50;
  curve_params.refinement = 0;

  curve_params.param.closest_point_resolution = 0;
  curve_params.param.closest_point_weight = 0.0;
  curve_params.param.closest_point_sigma2 = 0.0;
  curve_params.param.interior_sigma2 = 0.0;
  curve_params.param.smooth_concavity = 0.0;
  curve_params.param.smoothness = 0.000001;

  data.interior_weight_function.push_back (false);

  // #################### CURVE FITTING #########################
  ON_NurbsCurve curve = pcl::on_nurbs::FittingCurve2d::initNurbsCurve2D (order, data.interior, n_control_points);
  pcl::on_nurbs::FittingCurve2d curve_fit (&data, curve);
  curve_fit.fitting (curve_params);

  VisualizeCurve (curve_fit.m_nurbs);

  viewer.spin ();
  return 0;
}
开发者ID:Bardo91,项目名称:pcl,代码行数:64,代码来源:example_nurbs_fitting_curve.cpp

示例5: main

int main (int argc, char** argv)
{

  //ROS Initialization
  ros::init(argc, argv, "detecting_people");
  ros::NodeHandle nh;
  ros::Rate rate(13);

  ros::Subscriber state_sub = nh.subscribe("followme_state", 5, &stateCallback);
  ros::Publisher people_pub = nh.advertise<frmsg::people>("followme_people", 5);
  frmsg::people pub_people_;

  CloudConverter* cc_ = new CloudConverter();

  while (!cc_->ready_xyzrgb_)
  {
    ros::spinOnce();
    rate.sleep();
    if (!ros::ok())
    {
      printf("Terminated by Control-c.\n");
      return -1;
    }
  }

  // Input parameter from the .yaml
  std::string package_path_ = ros::package::getPath("detecting_people") + "/";
  cv::FileStorage* fs_ = new cv::FileStorage(package_path_ + "parameters.yml", cv::FileStorage::READ);

  // Algorithm parameters:
  std::string svm_filename = package_path_ + "trainedLinearSVMForPeopleDetectionWithHOG.yaml";
  std::cout << svm_filename << std::endl;

  float min_confidence = -1.5;
  float min_height = 1.3;
  float max_height = 2.3;
  float voxel_size = 0.06;
  Eigen::Matrix3f rgb_intrinsics_matrix;
  rgb_intrinsics_matrix << 525, 0.0, 319.5, 0.0, 525, 239.5, 0.0, 0.0, 1.0; // Kinect RGB camera intrinsics
  
  // Read if some parameters are passed from command line:
  pcl::console::parse_argument (argc, argv, "--svm", svm_filename);
  pcl::console::parse_argument (argc, argv, "--conf", min_confidence);
  pcl::console::parse_argument (argc, argv, "--min_h", min_height);
  pcl::console::parse_argument (argc, argv, "--max_h", max_height);


  // Read Kinect live stream:
  PointCloudT::Ptr cloud_people (new PointCloudT);
  cc_->ready_xyzrgb_ = false;
  while ( !cc_->ready_xyzrgb_ )
  {
    ros::spinOnce();
    rate.sleep();
  }
  pcl::PointCloud<pcl::PointXYZRGB>::ConstPtr cloud = cc_->msg_xyzrgb_;

  // Display pointcloud:
  pcl::visualization::PointCloudColorHandlerRGBField<PointT> rgb(cloud);
  viewer.addPointCloud<PointT> (cloud, rgb, "input_cloud");
  viewer.setCameraPosition(0,0,-2,0,-1,0,0);

  // Add point picking callback to viewer:
  struct callback_args cb_args;
  PointCloudT::Ptr clicked_points_3d (new PointCloudT);
  cb_args.clicked_points_3d = clicked_points_3d;
  cb_args.viewerPtr = pcl::visualization::PCLVisualizer::Ptr(&viewer);
  viewer.registerPointPickingCallback (pp_callback, (void*)&cb_args);
  std::cout << "Shift+click on three floor points, then press 'Q'..." << std::endl;

  // Spin until 'Q' is pressed:
  viewer.spin();
  std::cout << "done." << std::endl;
  
  //cloud_mutex.unlock ();    

  // Ground plane estimation:
  Eigen::VectorXf ground_coeffs;
  ground_coeffs.resize(4);
  std::vector<int> clicked_points_indices;
  for (unsigned int i = 0; i < clicked_points_3d->points.size(); i++)
    clicked_points_indices.push_back(i);
  pcl::SampleConsensusModelPlane<PointT> model_plane(clicked_points_3d);
  model_plane.computeModelCoefficients(clicked_points_indices,ground_coeffs);
  std::cout << "Ground plane: " << ground_coeffs(0) << " " << ground_coeffs(1) << " " << ground_coeffs(2) << " " << ground_coeffs(3) << std::endl;

  // Initialize new viewer:
  pcl::visualization::PCLVisualizer viewer("PCL Viewer");          // viewer initialization
  viewer.setCameraPosition(0,0,-2,0,-1,0,0);

  // Create classifier for people detection:  
  pcl::people::PersonClassifier<pcl::RGB> person_classifier;
  person_classifier.loadSVMFromFile(svm_filename);   // load trained SVM

  // People detection app initialization:
  pcl::people::GroundBasedPeopleDetectionApp<PointT> people_detector;    // people detection object
  people_detector.setVoxelSize(voxel_size);                        // set the voxel size
  people_detector.setIntrinsics(rgb_intrinsics_matrix);            // set RGB camera intrinsic parameters
  people_detector.setClassifier(person_classifier);                // set person classifier
  people_detector.setHeightLimits(min_height, max_height);         // set person classifier
//.........这里部分代码省略.........
开发者ID:fxia22,项目名称:tinker,代码行数:101,代码来源:main_ground_based_people_detection.cpp

示例6: run


//.........这里部分代码省略.........
    vis.addPointCloud (scene_vis, "scene_cloud");
  }

  if (heat_map)
  {
    pcl::PointCloud<pcl::PointXYZI>::Ptr intensity_cloud (new pcl::PointCloud<pcl::PointXYZI>);
    fdrf.getFaceHeatMap (intensity_cloud);

    pcl::visualization::PointCloudColorHandlerGenericField < pcl::PointXYZI > handler_keypoints (intensity_cloud, "intensity");
    vis.addPointCloud < pcl::PointXYZI > (intensity_cloud, handler_keypoints, "heat_map");
  }

  if (show_votes)
  {
    //display votes_
    /*pcl::PointCloud<pcl::PointXYZ>::Ptr votes_cloud(new pcl::PointCloud<pcl::PointXYZ>());
     fdrf.getVotes(votes_cloud);
     pcl::visualization::PointCloudColorHandlerCustom < pcl::PointXYZ > handler_votes(votes_cloud, 255, 0, 0);
     vis.addPointCloud < pcl::PointXYZ > (votes_cloud, handler_votes, "votes_cloud");
     vis.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 14, "votes_cloud");
     vis.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.5, "votes_cloud");
     vis.setPointCloudRenderingProperties(pcl::visualization::PCL_VISUALIZER_OPACITY, 0.75, "votes_cloud");*/

    pcl::PointCloud<pcl::PointXYZI>::Ptr votes_cloud (new pcl::PointCloud<pcl::PointXYZI> ());
    fdrf.getVotes2 (votes_cloud);
    pcl::visualization::PointCloudColorHandlerGenericField < pcl::PointXYZI > handler_votes (votes_cloud, "intensity");
    vis.addPointCloud < pcl::PointXYZI > (votes_cloud, handler_votes, "votes_cloud");
    vis.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 14, "votes_cloud");
  }

  vis.addCoordinateSystem (0.1, "global");

  std::vector<Eigen::VectorXd> heads;
  fdrf.getDetectedFaces (heads);
  face_detection_apps_utils::displayHeads (heads, vis);

  if (SHOW_GT)
  {
    //check if there is ground truth data
    std::string pose_file (filename);
    boost::replace_all (pose_file, ".pcd", "_pose.txt");

    Eigen::Matrix4d pose_mat;
    pose_mat.setIdentity (4, 4);
    bool result = face_detection_apps_utils::readMatrixFromFile (pose_file, pose_mat);

    if (result)
    {
      Eigen::Vector3d ea = pose_mat.block<3, 3> (0, 0).eulerAngles (0, 1, 2);
      Eigen::Vector3d trans_vector = Eigen::Vector3d (pose_mat (0, 3), pose_mat (1, 3), pose_mat (2, 3));
      std::cout << ea << std::endl;
      std::cout << trans_vector << std::endl;

      pcl::PointXYZ center_point;
      center_point.x = trans_vector[0];
      center_point.y = trans_vector[1];
      center_point.z = trans_vector[2];
      vis.addSphere (center_point, 0.05, 255, 0, 0, "sphere");

      pcl::ModelCoefficients cylinder_coeff;
      cylinder_coeff.values.resize (7); // We need 7 values
      cylinder_coeff.values[0] = center_point.x;
      cylinder_coeff.values[1] = center_point.y;
      cylinder_coeff.values[2] = center_point.z;

      cylinder_coeff.values[3] = ea[0];
      cylinder_coeff.values[4] = ea[1];
      cylinder_coeff.values[5] = ea[2];

      Eigen::Vector3d vec = Eigen::Vector3d::UnitZ () * -1.;
      Eigen::Matrix3d matrixxx;

      matrixxx = Eigen::AngleAxisd (ea[0], Eigen::Vector3d::UnitX ()) * Eigen::AngleAxisd (ea[1], Eigen::Vector3d::UnitY ())
          * Eigen::AngleAxisd (ea[2], Eigen::Vector3d::UnitZ ());

      //matrixxx = pose_mat.block<3,3>(0,0);
      vec = matrixxx * vec;

      cylinder_coeff.values[3] = vec[0];
      cylinder_coeff.values[4] = vec[1];
      cylinder_coeff.values[5] = vec[2];

      cylinder_coeff.values[6] = 0.01;
      vis.addCylinder (cylinder_coeff, "cylinder");
    }
  }

  vis.setRepresentationToSurfaceForAllActors ();

  if (VIDEO)
  {
    vis.spinOnce (50, true);
  } else
  {
    vis.spin ();
  }

  vis.removeAllPointClouds ();
  vis.removeAllShapes ();
}
开发者ID:tfili,项目名称:pcl,代码行数:101,代码来源:filesystem_face_detection.cpp


注:本文中的pcl::visualization::PCLVisualizer::spin方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。