本文整理汇总了C++中pcl::search::KdTree::setInputCloud方法的典型用法代码示例。如果您正苦于以下问题:C++ KdTree::setInputCloud方法的具体用法?C++ KdTree::setInputCloud怎么用?C++ KdTree::setInputCloud使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类pcl::search::KdTree
的用法示例。
在下文中一共展示了KdTree::setInputCloud方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: indices
void
pp_callback (const pcl::visualization::PointPickingEvent& event, void* cookie)
{
int idx = event.getPointIndex ();
if (idx == -1)
return;
if (!cloud)
{
cloud = *reinterpret_cast<pcl::PCLPointCloud2::Ptr*> (cookie);
xyzcloud.reset (new pcl::PointCloud<pcl::PointXYZ>);
pcl::fromPCLPointCloud2 (*cloud, *xyzcloud);
search.setInputCloud (xyzcloud);
}
// Return the correct index in the cloud instead of the index on the screen
std::vector<int> indices (1);
std::vector<float> distances (1);
// Because VTK/OpenGL stores data without NaN, we lose the 1-1 correspondence, so we must search for the real point
pcl::PointXYZ picked_pt;
event.getPoint (picked_pt.x, picked_pt.y, picked_pt.z);
//TODO: Look into this.
search.nearestKSearch (picked_pt, 1, indices, distances);
PCL_INFO ("Point index picked: %d (real: %d) - [%f, %f, %f]\n", idx, indices[0], picked_pt.x, picked_pt.y, picked_pt.z);
idx = indices[0];
// If two points were selected, draw an arrow between them
pcl::PointXYZ p1, p2;
if (event.getPoints (p1.x, p1.y, p1.z, p2.x, p2.y, p2.z) && p)
{
std::stringstream ss;
ss << p1 << p2;
p->addArrow<pcl::PointXYZ, pcl::PointXYZ> (p1, p2, 1.0, 1.0, 1.0, ss.str ());
return;
}
// Else, if a single point has been selected
std::stringstream ss;
ss << idx;
// Get the cloud's fields
for (size_t i = 0; i < cloud->fields.size (); ++i)
{
if (!isMultiDimensionalFeatureField (cloud->fields[i]))
continue;
PCL_INFO ("Multidimensional field found: %s\n", cloud->fields[i].name.c_str ());
#if VTK_MAJOR_VERSION==6 || (VTK_MAJOR_VERSION==5 && VTK_MINOR_VERSION>6)
ph_global.addFeatureHistogram (*cloud, cloud->fields[i].name, idx, ss.str ());
ph_global.renderOnce ();
#endif
}
if (p)
{
pcl::PointXYZ pos;
event.getPoint (pos.x, pos.y, pos.z);
p->addText3D<pcl::PointXYZ> (ss.str (), pos, 0.0005, 1.0, 1.0, 1.0, ss.str ());
}
}
示例2: getNormal
int ICP::getNormal(const CloudPtr &cloud_in, NormalCloudPtr &cloud_out, pcl::search::KdTree<Point>::Ptr &tree)
{
tree->setInputCloud(cloud_in);
pcl::NormalEstimation<Point, NormalPoint> norm_est;
norm_est.setSearchMethod(tree);
norm_est.setKSearch(_GetNormalKSearch);
norm_est.setInputCloud(cloud_in);
norm_est.compute(*cloud_out);
Utils::combineField(cloud_in, cloud_out);
return 0;
}
示例3: FindPickedPoint
void FindPickedPoint(const pcl::visualization::PointPickingEvent& event) {
int idx = event.getPointIndex ();
if (idx == -1)
{
std::cout << "Invalid pick!\n;";
return;
}
search.setInputCloud(build_cloud_accurate_plane);
// Return the correct index in the cloud instead of the index on the screen
std::vector<int> indices (1);
std::vector<float> distances (1);
// Because VTK/OpenGL stores data without NaN, we lose the 1-1 correspondence, so we must search for the real point
pcl::PointXYZ picked_pt;
event.getPoint (picked_pt.x, picked_pt.y, picked_pt.z);
search.nearestKSearch (picked_pt, 1, indices, distances);
picked_points.push_back(picked_pt);
}
示例4: depthPointsCallback
void depthPointsCallback(const sensor_msgs::PointCloud2ConstPtr& cloud_msg) {
// Instantiate various clouds
pcl::PCLPointCloud2* cloud_intermediate = new pcl::PCLPointCloud2;
pcl::PCLPointCloud2ConstPtr cloudPtr(cloud_intermediate);
pcl::PointCloud<pcl::PointXYZ> cloud;
// Convert to PCL data type
pcl_conversions::toPCL(*cloud_msg, *cloud_intermediate);
// Apply Voxel Filter on PCLPointCloud2
vox.setInputCloud (cloudPtr);
vox.setInputCloud (cloudPtr);
vox.filter (*cloud_intermediate);
// Convert PCL::PointCloud2 to PCL::PointCloud<PointXYZ>
pcl::fromPCLPointCloud2(*cloud_intermediate, cloud);
pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_p = cloud.makeShared();
// Apply Passthrough Filter
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.3, 1);
pass.setInputCloud (cloud_p);
//pass.setFilterLimitsNegative (true);
pass.filter (*cloud_p);
// Apply Passthrough Filter
pass.setFilterFieldName ("x");
pass.setFilterLimits (-0.2, 0.2);
pass.setInputCloud (cloud_p);
pass.setFilterFieldName ("z");
pass.setFilterLimits (0.0, 3.0);
//pass.setFilterLimitsNegative (true);
pass.filter (*cloud_p);
// Apply Statistical Noise Filter
sor.setInputCloud (cloud_p);
sor.filter (*cloud_p);
// Planar segmentation: Remove large planes? Or extract floor?
pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
int nr_points = (int) cloud_p->points.size ();
Eigen::Vector3f lol (0, 1, 0);
seg.setEpsAngle( 30.0f * (3.14f/180.0f) );
seg.setAxis(lol);
//while(cloud_p->points.size () > 0.2 * nr_points) {
sor.setInputCloud (cloud_p);
sor.filter (*cloud_p);
// Create the segmentation object
pcl::SACSegmentation<pcl::PointXYZ> seg;
// Optional
seg.setOptimizeCoefficients (true);
// Mandatory
seg.setModelType (pcl::SACMODEL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setDistanceThreshold (0.01);
seg.setInputCloud (cloud_p);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
//break;
}
else {
/*std::cout << "Model coefficients: " << coefficients->values[0] << " "
<< coefficients->values[1] << " "
<< coefficients->values[2] << " "
<< coefficients->values[3] << "\n";*/
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud_p);
extract.setIndices(inliers);
extract.setNegative(true);
extract.filter(*cloud_p);
}
//}
Eigen::Vector3f lol_p (0.5f, 0, 0.5f);
seg.setAxis(lol_p);
while(cloud_p->points.size () > 0.1 * nr_points) {
seg.setInputCloud (cloud_p);
seg.segment (*inliers, *coefficients);
if (inliers->indices.size () == 0)
{
break;
}
else {
/*std::cout << "Model coefficients: " << coefficients->values[0] << " "
<< coefficients->values[1] << " "
<< coefficients->values[2] << " "
<< coefficients->values[3] << "\n";*/
pcl::ExtractIndices<pcl::PointXYZ> extract;
extract.setInputCloud(cloud_p);
extract.setIndices(inliers);
extract.setNegative(true);
extract.filter(*cloud_p);
//.........这里部分代码省略.........