本文整理汇总了C++中pcl::Correspondences类的典型用法代码示例。如果您正苦于以下问题:C++ Correspondences类的具体用法?C++ Correspondences怎么用?C++ Correspondences使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Correspondences类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
inline void
pcl::registration::getMatchIndices (const pcl::Correspondences& correspondences, std::vector<int>& indices)
{
indices.resize (correspondences.size ());
for (size_t i = 0; i < correspondences.size (); ++i)
indices[i] = correspondences[i].index_match;
}
示例2:
template <typename PointSource, typename PointTarget> inline void
TransformationEstimationJointOptimize<PointSource, PointTarget>::estimateRigidTransformation (
const pcl::PointCloud<PointSource> &cloud_src,
const pcl::PointCloud<PointTarget> &cloud_tgt,
const pcl::Correspondences &correspondences,
const pcl::Correspondences &correspondences_dfp,
float alpha_arg,
Eigen::Matrix4f &transformation_matrix)
{
const int nr_correspondences = (int)correspondences.size();
std::vector<int> indices_src(nr_correspondences);
std::vector<int> indices_tgt(nr_correspondences);
for (int i = 0; i < nr_correspondences; ++i)
{
indices_src[i] = correspondences[i].index_query;
indices_tgt[i] = correspondences[i].index_match;
}
const int nr_correspondences_dfp = (int)correspondences_dfp.size();
std::vector<int> indices_src_dfp(nr_correspondences_dfp);
std::vector<int> indices_tgt_dfp(nr_correspondences_dfp);
for (int i = 0; i < nr_correspondences_dfp; ++i)
{
indices_src_dfp[i] = correspondences_dfp[i].index_query;
indices_tgt_dfp[i] = correspondences_dfp[i].index_match;
}
estimateRigidTransformation(cloud_src, indices_src, indices_src_dfp, cloud_tgt, indices_tgt, indices_tgt_dfp,
alpha_arg, transformation_matrix);
}
示例3:
void
pcl::registration::CorrespondenceRejectorDistance::getRemainingCorrespondences (
const pcl::Correspondences& original_correspondences,
pcl::Correspondences& remaining_correspondences)
{
unsigned int number_valid_correspondences = 0;
remaining_correspondences.resize (original_correspondences.size ());
for (size_t i = 0; i < original_correspondences.size (); ++i)
{
if (data_container_)
{
if (data_container_->getCorrespondenceScore (original_correspondences[i]) < max_distance_)
{
remaining_correspondences[number_valid_correspondences] = original_correspondences[i];
++number_valid_correspondences;
}
}
else
{
if (original_correspondences[i].distance < max_distance_)
{
remaining_correspondences[number_valid_correspondences] = original_correspondences[i];
++number_valid_correspondences;
}
}
}
remaining_correspondences.resize (number_valid_correspondences);
}
示例4: index
template <typename PointSource, typename PointTarget, typename Scalar> void
pcl::registration::CorrespondenceEstimation<PointSource, PointTarget, Scalar>::determineCorrespondences (
pcl::Correspondences &correspondences, double max_distance)
{
if (!initCompute ())
return;
double max_dist_sqr = max_distance * max_distance;
typedef typename pcl::traits::fieldList<PointTarget>::type FieldListTarget;
correspondences.resize (indices_->size ());
std::vector<int> index (1);
std::vector<float> distance (1);
pcl::Correspondence corr;
unsigned int nr_valid_correspondences = 0;
// Check if the template types are the same. If true, avoid a copy.
// Both point types MUST be registered using the POINT_CLOUD_REGISTER_POINT_STRUCT macro!
if (isSamePointType<PointSource, PointTarget> ())
{
// Iterate over the input set of source indices
for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx)
{
tree_->nearestKSearch (input_->points[*idx], 1, index, distance);
if (distance[0] > max_dist_sqr)
continue;
corr.index_query = *idx;
corr.index_match = index[0];
corr.distance = distance[0];
correspondences[nr_valid_correspondences++] = corr;
}
}
else
{
PointTarget pt;
// Iterate over the input set of source indices
for (std::vector<int>::const_iterator idx = indices_->begin (); idx != indices_->end (); ++idx)
{
// Copy the source data to a target PointTarget format so we can search in the tree
pcl::for_each_type <FieldListTarget> (pcl::NdConcatenateFunctor <PointSource, PointTarget> (
input_->points[*idx],
pt));
tree_->nearestKSearch (pt, 1, index, distance);
if (distance[0] > max_dist_sqr)
continue;
corr.index_query = *idx;
corr.index_match = index[0];
corr.distance = distance[0];
correspondences[nr_valid_correspondences++] = corr;
}
}
correspondences.resize (nr_valid_correspondences);
deinitCompute ();
}
示例5: return
template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar> int
pcl::registration::FPCSInitialAlignment <PointSource, PointTarget, NormalT, Scalar>::bruteForceCorrespondences (
int idx1,
int idx2,
pcl::Correspondences &pairs)
{
const float max_norm_diff = 0.5f * max_norm_diff_ * M_PI / 180.f;
// calculate reference segment distance and normal angle
float ref_dist = pcl::euclideanDistance (target_->points[idx1], target_->points[idx2]);
float ref_norm_angle = (use_normals_ ? (target_normals_->points[idx1].getNormalVector3fMap () -
target_normals_->points[idx2].getNormalVector3fMap ()).norm () : 0.f);
// loop over all pairs of points in source point cloud
std::vector <int>::iterator it_out = source_indices_->begin (), it_out_e = source_indices_->end () - 1;
std::vector <int>::iterator it_in, it_in_e = source_indices_->end ();
for ( ; it_out != it_out_e; it_out++)
{
it_in = it_out + 1;
const PointSource *pt1 = &(*input_)[*it_out];
for ( ; it_in != it_in_e; it_in++)
{
const PointSource *pt2 = &(*input_)[*it_in];
// check point distance compared to reference dist (from base)
float dist = pcl::euclideanDistance (*pt1, *pt2);
if (std::abs(dist - ref_dist) < max_pair_diff_)
{
// add here normal evaluation if normals are given
if (use_normals_)
{
const NormalT *pt1_n = &(source_normals_->points[*it_out]);
const NormalT *pt2_n = &(source_normals_->points[*it_in]);
float norm_angle_1 = (pt1_n->getNormalVector3fMap () - pt2_n->getNormalVector3fMap ()).norm ();
float norm_angle_2 = (pt1_n->getNormalVector3fMap () + pt2_n->getNormalVector3fMap ()).norm ();
float norm_diff = std::min <float> (std::abs (norm_angle_1 - ref_norm_angle), std::abs (norm_angle_2 - ref_norm_angle));
if (norm_diff > max_norm_diff)
continue;
}
pairs.push_back (pcl::Correspondence (*it_in, *it_out, dist));
pairs.push_back (pcl::Correspondence (*it_out, *it_in, dist));
}
}
}
// return success if at least one correspondence was found
return (pairs.size () == 0 ? -1 : 0);
}
示例6: estimateRigidTransformation
template <typename PointSource, typename PointTarget, typename Scalar> inline void
pcl::registration::TransformationEstimationPointToPlaneLLSWeighted<PointSource, PointTarget, Scalar>::
estimateRigidTransformation (const pcl::PointCloud<PointSource> &cloud_src,
const pcl::PointCloud<PointTarget> &cloud_tgt,
const pcl::Correspondences &correspondences,
Matrix4 &transformation_matrix) const
{
ConstCloudIterator<PointSource> source_it (cloud_src, correspondences, true);
ConstCloudIterator<PointTarget> target_it (cloud_tgt, correspondences, false);
std::vector<Scalar> weights (correspondences.size ());
for (size_t i = 0; i < correspondences.size (); ++i)
weights[i] = correspondences[i].weight;
typename std::vector<Scalar>::const_iterator weights_it = weights.begin ();
estimateRigidTransformation (source_it, target_it, weights_it, transformation_matrix);
}
示例7: sqrt
inline void
pcl::registration::getCorDistMeanStd (const pcl::Correspondences &correspondences, double &mean, double &stddev)
{
if (correspondences.empty ())
return;
double sum = 0, sq_sum = 0;
for (size_t i = 0; i < correspondences.size (); ++i)
{
sum += correspondences[i].distance;
sq_sum += correspondences[i].distance * correspondences[i].distance;
}
mean = sum / static_cast<double> (correspondences.size ());
double variance = (sq_sum - sum * sum / static_cast<double> (correspondences.size ())) / static_cast<double> (correspondences.size () - 1);
stddev = sqrt (variance);
}
示例8: detect
void ppfmap::CudaPPFMatch<PointT, NormalT>::getCorrespondences(
const PointCloudPtr cloud, const NormalsPtr normals,
pcl::Correspondences& correspondences) {
std::vector<Pose> poses;
detect(cloud, normals, poses);
for (const auto& pose : poses) {
correspondences.push_back(pose.c);
}
}
示例9:
Eigen::Matrix4f SHOTObjectGenerator::computeTransformationSAC(const pcl::PointCloud<PointXYZSHOT>::ConstPtr &cloud_src, const pcl::PointCloud<PointXYZSHOT>::ConstPtr &cloud_trg,
const pcl::CorrespondencesConstPtr& correspondences, pcl::Correspondences& inliers)
{
CLOG(LTRACE) << "Computing SAC" << std::endl ;
pcl::registration::CorrespondenceRejectorSampleConsensus<PointXYZSHOT> sac ;
sac.setInputSource(cloud_src) ;
sac.setInputTarget(cloud_trg) ;
sac.setInlierThreshold(0.001f) ;
sac.setMaximumIterations(2000) ;
sac.setInputCorrespondences(correspondences) ;
sac.getCorrespondences(inliers) ;
CLOG(LINFO) << "SAC inliers " << inliers.size();
if ( ((float)inliers.size()/(float)correspondences->size()) >85)
return Eigen::Matrix4f::Identity();
return sac.getBestTransformation() ;
}
示例10: nth
void
pcl::registration::CorrespondenceRejectorMedianDistance::getRemainingCorrespondences (
const pcl::Correspondences& original_correspondences,
pcl::Correspondences& remaining_correspondences)
{
std::vector <double> dists;
dists.resize (original_correspondences.size ());
for (size_t i = 0; i < original_correspondences.size (); ++i)
{
if (data_container_)
dists[i] = data_container_->getCorrespondenceScore (original_correspondences[i]);
else
dists[i] = original_correspondences[i].distance;
}
std::vector <double> nth (dists);
nth_element (nth.begin (), nth.begin () + (nth.size () / 2), nth.end ());
median_distance_ = nth [nth.size () / 2];
unsigned int number_valid_correspondences = 0;
remaining_correspondences.resize (original_correspondences.size ());
for (size_t i = 0; i < original_correspondences.size (); ++i)
if (dists[i] <= median_distance_ * factor_)
remaining_correspondences[number_valid_correspondences++] = original_correspondences[i];
remaining_correspondences.resize (number_valid_correspondences);
}
示例11: if
void
pcl::getRejectedQueryIndices (const pcl::Correspondences &correspondences_before,
const pcl::Correspondences &correspondences_after,
std::vector<int>& indices,
bool presorting_required)
{
indices.clear();
const int nr_correspondences_before = static_cast<int> (correspondences_before.size ());
const int nr_correspondences_after = static_cast<int> (correspondences_after.size ());
if (nr_correspondences_before == 0)
return;
else if (nr_correspondences_after == 0)
{
indices.resize(nr_correspondences_before);
for (int i = 0; i < nr_correspondences_before; ++i)
indices[i] = correspondences_before[i].index_query;
return;
}
std::vector<int> indices_before (nr_correspondences_before);
for (int i = 0; i < nr_correspondences_before; ++i)
indices_before[i] = correspondences_before[i].index_query;
std::vector<int> indices_after (nr_correspondences_after);
for (int i = 0; i < nr_correspondences_after; ++i)
indices_after[i] = correspondences_after[i].index_query;
if (presorting_required)
{
std::sort (indices_before.begin (), indices_before.end ());
std::sort (indices_after.begin (), indices_after.end ());
}
set_difference (
indices_before.begin (), indices_before.end (),
indices_after.begin (), indices_after.end (),
inserter (indices, indices.begin ()));
}
示例12: fabs
void
pcl::registration::CorrespondenceRejectionOrganizedBoundary::getRemainingCorrespondences (const pcl::Correspondences& original_correspondences,
pcl::Correspondences& remaining_correspondences)
{
pcl::PointCloud<pcl::PointXYZ>::ConstPtr cloud = boost::static_pointer_cast<pcl::registration::DataContainer<pcl::PointXYZ, pcl::PointNormal> >(data_container_)->getInputTarget ();
if (!cloud->isOrganized ())
{
PCL_ERROR ("[pcl::registration::CorrespondenceRejectionOrganizedBoundary::getRemainingCorrespondences] The target cloud is not organized.\n");
remaining_correspondences.clear ();
return;
}
remaining_correspondences.reserve (original_correspondences.size ());
for (size_t c_i = 0; c_i < original_correspondences.size (); ++c_i)
{
/// Count how many NaNs bound the target point
int x = original_correspondences[c_i].index_match % cloud->width;
int y = original_correspondences[c_i].index_match / cloud->width;
int nan_count_tgt = 0;
for (int x_d = -window_size_/2; x_d <= window_size_/2; ++x_d)
for (int y_d = -window_size_/2; y_d <= window_size_/2; ++y_d)
if (x + x_d >= 0 && x + x_d < cloud->width &&
y + y_d >= 0 && y + y_d < cloud->height)
{
if (!pcl_isfinite ((*cloud)(x + x_d, y + y_d).z) ||
fabs ((*cloud)(x, y).z - (*cloud)(x + x_d, y + y_d).z) > depth_step_threshold_)
nan_count_tgt ++;
}
if (nan_count_tgt >= boundary_nans_threshold_)
continue;
/// The correspondence passes both tests, add it to the filtered set of correspondences
remaining_correspondences.push_back (original_correspondences[c_i]);
}
}
示例13: getClassName
void
pcl::registration::CorrespondenceRejectorSurfaceNormal::getRemainingCorrespondences (
const pcl::Correspondences& original_correspondences,
pcl::Correspondences& remaining_correspondences)
{
if (!data_container_)
{
PCL_ERROR ("[pcl::registratin::%s::getRemainingCorrespondences] DataContainer object is not initialized!\n", getClassName ().c_str ());
return;
}
unsigned int number_valid_correspondences = 0;
remaining_correspondences.resize (original_correspondences.size ());
// Test each correspondence
for (const auto &original_correspondence : original_correspondences)
{
if (data_container_->getCorrespondenceScoreFromNormals (original_correspondence) > threshold_)
remaining_correspondences[number_valid_correspondences++] = original_correspondence;
}
remaining_correspondences.resize (number_valid_correspondences);
}
示例14:
template <typename PointSource, typename PointTarget, typename NormalT, typename Scalar> void
pcl::registration::FPCSInitialAlignment <PointSource, PointTarget, NormalT, Scalar>::linkMatchWithBase (
const std::vector <int> &base_indices,
std::vector <int> &match_indices,
pcl::Correspondences &correspondences)
{
// calculate centroid of base and target
Eigen::Vector4f centre_base, centre_match;
pcl::compute3DCentroid (*target_, base_indices, centre_base);
pcl::compute3DCentroid (*input_, match_indices, centre_match);
PointTarget centre_pt_base;
centre_pt_base.x = centre_base[0];
centre_pt_base.y = centre_base[1];
centre_pt_base.z = centre_base[2];
PointSource centre_pt_match;
centre_pt_match.x = centre_match[0];
centre_pt_match.y = centre_match[1];
centre_pt_match.z = centre_match[2];
// find corresponding points according to their distance to the centroid
std::vector <int> copy = match_indices;
std::vector <int>::const_iterator it_base = base_indices.begin (), it_base_e = base_indices.end ();
std::vector <int>::iterator it_match, it_match_e = copy.end ();
std::vector <int>::iterator it_match_orig = match_indices.begin ();
for (; it_base != it_base_e; it_base++, it_match_orig++)
{
float dist_sqr_1 = pcl::squaredEuclideanDistance (target_->points[*it_base], centre_pt_base);
float best_diff_sqr = FLT_MAX;
int best_index = -1;
for (it_match = copy.begin (); it_match != it_match_e; it_match++)
{
// calculate difference of distances to centre point
float dist_sqr_2 = pcl::squaredEuclideanDistance (input_->points[*it_match], centre_pt_match);
float diff_sqr = std::abs(dist_sqr_1 - dist_sqr_2);
if (diff_sqr < best_diff_sqr)
{
best_diff_sqr = diff_sqr;
best_index = *it_match;
}
}
// assign new correspondence and update indices of matched targets
correspondences.push_back (pcl::Correspondence (best_index, *it_base, best_diff_sqr));
*it_match_orig = best_index;
}
}
示例15: getClassName
void
pcl::registration::CorrespondenceRejectorSurfaceNormal::getRemainingCorrespondences (
const pcl::Correspondences& original_correspondences,
pcl::Correspondences& remaining_correspondences)
{
if (!data_container_)
{
PCL_ERROR ("[pcl::registratin::%s::getRemainingCorrespondences] DataContainer object is not initialized!\n", getClassName ().c_str ());
return;
}
unsigned int number_valid_correspondences = 0;
remaining_correspondences.resize (original_correspondences.size ());
// Test each correspondence
for (size_t i = 0; i < original_correspondences.size (); ++i)
{
if (boost::static_pointer_cast<DataContainer<pcl::PointXYZ, pcl::PointNormal> >
(data_container_)->getCorrespondenceScoreFromNormals (original_correspondences[i]) > threshold_)
remaining_correspondences[number_valid_correspondences++] = original_correspondences[i];
}
remaining_correspondences.resize (number_valid_correspondences);
}