本文整理汇总了C++中opm::parameter::ParameterGroup::has方法的典型用法代码示例。如果您正苦于以下问题:C++ ParameterGroup::has方法的具体用法?C++ ParameterGroup::has怎么用?C++ ParameterGroup::has使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类opm::parameter::ParameterGroup
的用法示例。
在下文中一共展示了ParameterGroup::has方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: setupGridAndProps
inline void setupGridAndProps(const Opm::parameter::ParameterGroup& param,
CpGrid& grid,
ResProp<3>& res_prop)
{
// Initialize grid and reservoir properties.
// Parts copied from CpGrid::init().
std::string fileformat = param.getDefault<std::string>("fileformat", "cartesian");
if (fileformat == "sintef_legacy") {
std::string grid_prefix = param.get<std::string>("grid_prefix");
grid.readSintefLegacyFormat(grid_prefix);
MESSAGE("Warning: We do not yet read legacy reservoir properties. Using defaults.");
res_prop.init(grid.size(0));
} else if (fileformat == "eclipse") {
Opm::EclipseGridParser parser(param.get<std::string>("filename"));
double z_tolerance = param.getDefault<double>("z_tolerance", 0.0);
bool periodic_extension = param.getDefault<bool>("periodic_extension", false);
bool turn_normals = param.getDefault<bool>("turn_normals", false);
grid.processEclipseFormat(parser, z_tolerance, periodic_extension, turn_normals);
double perm_threshold_md = param.getDefault("perm_threshold_md", 0.0);
double perm_threshold = Opm::unit::convert::from(perm_threshold_md, Opm::prefix::milli*Opm::unit::darcy);
std::string rock_list = param.getDefault<std::string>("rock_list", "no_list");
std::string* rl_ptr = (rock_list == "no_list") ? 0 : &rock_list;
bool use_j = param.getDefault("use_jfunction_scaling", useJ<ResProp<3> >());
double sigma = 1.0;
double theta = 0.0;
if (use_j) {
sigma = param.getDefault("sigma", sigma);
theta = param.getDefault("theta", theta);
}
if (param.has("viscosity1") || param.has("viscosity2")) {
double v1 = param.getDefault("viscosity1", 0.001);
double v2 = param.getDefault("viscosity2", 0.003);
res_prop.setViscosities(v1, v2);
}
res_prop.init(parser, grid.globalCell(), perm_threshold, rl_ptr,
use_j, sigma, theta);
} else if (fileformat == "cartesian") {
array<int, 3> dims = {{ param.getDefault<int>("nx", 1),
param.getDefault<int>("ny", 1),
param.getDefault<int>("nz", 1) }};
array<double, 3> cellsz = {{ param.getDefault<double>("dx", 1.0),
param.getDefault<double>("dy", 1.0),
param.getDefault<double>("dz", 1.0) }};
grid.createCartesian(dims, cellsz);
double default_poro = param.getDefault("default_poro", 0.2);
double default_perm_md = param.getDefault("default_perm_md", 100.0);
double default_perm = Opm::unit::convert::from(default_perm_md, Opm::prefix::milli*Opm::unit::darcy);
MESSAGE("Warning: For generated cartesian grids, we use uniform reservoir properties.");
res_prop.init(grid.size(0), default_poro, default_perm);
} else {
THROW("Unknown file format string: " << fileformat);
}
if (param.getDefault("use_unique_boundary_ids", false)) {
grid.setUniqueBoundaryIds(true);
}
}
示例2: init
/// Initialize the grid.
void CpGrid::init(const Opm::parameter::ParameterGroup& param)
{
std::string fileformat = param.get<std::string>("fileformat");
if (fileformat == "sintef_legacy") {
std::string grid_prefix = param.get<std::string>("grid_prefix");
readSintefLegacyFormat(grid_prefix);
} else if (fileformat == "eclipse") {
std::string filename = param.get<std::string>("filename");
if (param.has("z_tolerance")) {
std::cerr << "****** Warning: z_tolerance parameter is obsolete, use PINCH in deck input instead\n";
}
bool periodic_extension = param.getDefault<bool>("periodic_extension", false);
bool turn_normals = param.getDefault<bool>("turn_normals", false);
readEclipseFormat(filename, periodic_extension, turn_normals);
} else if (fileformat == "cartesian") {
array<int, 3> dims = {{ param.getDefault<int>("nx", 1),
param.getDefault<int>("ny", 1),
param.getDefault<int>("nz", 1) }};
array<double, 3> cellsz = {{ param.getDefault<double>("dx", 1.0),
param.getDefault<double>("dy", 1.0),
param.getDefault<double>("dz", 1.0) }};
createCartesian(dims, cellsz);
} else {
OPM_THROW(std::runtime_error, "Unknown file format string: " << fileformat);
}
}
示例3: setupGridAndProps
inline void setupGridAndProps(const Opm::parameter::ParameterGroup& param,
Dune::CpGrid& grid,
ResProp<3>& res_prop)
{
// Initialize grid and reservoir properties.
// Parts copied from Dune::CpGrid::init().
std::string fileformat = param.getDefault<std::string>("fileformat", "cartesian");
if (fileformat == "sintef_legacy") {
std::string grid_prefix = param.get<std::string>("grid_prefix");
grid.readSintefLegacyFormat(grid_prefix);
OPM_MESSAGE("Warning: We do not yet read legacy reservoir properties. Using defaults.");
res_prop.init(grid.size(0));
} else if (fileformat == "eclipse") {
std::string ecl_file = param.get<std::string>("filename");
Opm::ParseContext parseContext;
Opm::ParserPtr parser(new Opm::Parser());
Opm::DeckConstPtr deck(parser->parseFile(ecl_file , parseContext));
if (param.has("z_tolerance")) {
std::cerr << "****** Warning: z_tolerance parameter is obsolete, use PINCH in deck input instead\n";
}
bool periodic_extension = param.getDefault<bool>("periodic_extension", false);
bool turn_normals = param.getDefault<bool>("turn_normals", false);
grid.processEclipseFormat(deck, periodic_extension, turn_normals);
// Save EGRID file in case we are writing ECL output.
if (param.getDefault("output_ecl", false)) {
OPM_THROW(std::runtime_error, "Saving to EGRID files is not yet implemented");
/*
boost::filesystem::path ecl_path(ecl_file);
const std::vector<int>& globalCell = grid.globalCell();
ecl_path.replace_extension(".EGRID");
parser.saveEGRID(ecl_path.string() , (int) globalCell.size() , &globalCell[0]);
*/
}
double perm_threshold_md = param.getDefault("perm_threshold_md", 0.0);
double perm_threshold = Opm::unit::convert::from(perm_threshold_md, Opm::prefix::milli*Opm::unit::darcy);
std::string rock_list = param.getDefault<std::string>("rock_list", "no_list");
std::string* rl_ptr = (rock_list == "no_list") ? 0 : &rock_list;
bool use_j = param.getDefault("use_jfunction_scaling", useJ<ResProp<3> >());
double sigma = 1.0;
double theta = 0.0;
if (use_j) {
sigma = param.getDefault("sigma", sigma);
theta = param.getDefault("theta", theta);
}
if (param.has("viscosity1") || param.has("viscosity2")) {
double v1 = param.getDefault("viscosity1", 0.001);
double v2 = param.getDefault("viscosity2", 0.003);
res_prop.setViscosities(v1, v2);
}
res_prop.init(deck, grid.globalCell(), perm_threshold, rl_ptr,
use_j, sigma, theta);
} else if (fileformat == "cartesian") {
std::array<int, 3> dims = {{ param.getDefault<int>("nx", 1),
param.getDefault<int>("ny", 1),
param.getDefault<int>("nz", 1) }};
std::array<double, 3> cellsz = {{ param.getDefault<double>("dx", 1.0),
param.getDefault<double>("dy", 1.0),
param.getDefault<double>("dz", 1.0) }};
grid.createCartesian(dims, cellsz);
double default_poro = param.getDefault("default_poro", 0.2);
double default_perm_md = param.getDefault("default_perm_md", 100.0);
double default_perm = Opm::unit::convert::from(default_perm_md, Opm::prefix::milli*Opm::unit::darcy);
OPM_MESSAGE("Warning: For generated cartesian grids, we use uniform reservoir properties.");
res_prop.init(grid.size(0), default_poro, default_perm);
} else {
OPM_THROW(std::runtime_error, "Unknown file format string: " << fileformat);
}
if (param.getDefault("use_unique_boundary_ids", false)) {
grid.setUniqueBoundaryIds(true);
}
}
示例4: upscale
void upscale(const Opm::parameter::ParameterGroup& param)
{
// Control structure.
std::vector<double> saturations;
Opm::SparseTable<double> all_pdrops;
bool from_file = param.has("sat_pdrop_filename");
if (from_file) {
std::string filename = param.get<std::string>("sat_pdrop_filename");
std::ifstream file(filename.c_str());
if (!file) {
OPM_THROW(std::runtime_error, "Could not open file " << filename);
}
readControl(file, saturations, all_pdrops);
} else {
// Get a linear range of saturations.
int num_sats = param.getDefault("num_sats", 4);
double min_sat = param.getDefault("min_sat", 0.2);
double max_sat = param.getDefault("max_sat", 0.8);
saturations.resize(num_sats);
for (int i = 0; i < num_sats; ++i) {
double factor = num_sats == 1 ? 0 : double(i)/double(num_sats - 1);
saturations[i] = (1.0 - factor)*min_sat + factor*max_sat;
}
// Get a logarithmic range of pressure drops.
int num_pdrops = param.getDefault("num_pdrops", 5);
double log_min_pdrop = std::log(param.getDefault("min_pdrop", 1e2));
double log_max_pdrop = std::log(param.getDefault("max_pdrop", 1e6));
std::vector<double> pdrops;
pdrops.resize(num_pdrops);
for (int i = 0; i < num_pdrops; ++i) {
double factor = num_pdrops == 1 ? 0 : double(i)/double(num_pdrops - 1);
pdrops[i] = std::exp((1.0 - factor)*log_min_pdrop + factor*log_max_pdrop);
}
// Assign the same pressure drops to all saturations.
for (int i = 0; i < num_sats; ++i) {
all_pdrops.appendRow(pdrops.begin(), pdrops.end());
}
}
int flow_direction = param.getDefault("flow_direction", 0);
// Print the saturations and pressure drops.
// writeControl(std::cout, saturations, all_pdrops);
// Initialize upscaler.
typedef SteadyStateUpscaler<Traits> Upscaler;
typedef typename Upscaler::permtensor_t permtensor_t;
Upscaler upscaler;
upscaler.init(param);
// First, compute an upscaled permeability.
permtensor_t upscaled_K = upscaler.upscaleSinglePhase();
permtensor_t upscaled_K_copy = upscaled_K;
upscaled_K_copy *= (1.0/(Opm::prefix::milli*Opm::unit::darcy));
std::cout.precision(15);
std::cout << "Upscaled K in millidarcy:\n" << upscaled_K_copy << std::endl;
std::cout << "Upscaled porosity: " << upscaler.upscalePorosity() << std::endl;
// Create output streams for upscaled relative permeabilities
std::string kr_filename = param.getDefault<std::string>("kr_filename", "upscaled_relperm");
std::string krw_filename = kr_filename + "_water";
std::string kro_filename = kr_filename + "_oil";
std::ofstream krw_out(krw_filename.c_str());
std::ofstream kro_out(kro_filename.c_str());
krw_out << "# Result from steady state upscaling" << std::endl;
krw_out << "# Pressuredrop Sw Krxx Kryy Krzz" << std::endl;
kro_out << "# Result from steady state upscaling" << std::endl;
kro_out << "# Pressuredrop Sw Krxx Kryy Krzz" << std::endl;
krw_out.precision(15); krw_out.setf(std::ios::scientific | std::ios::showpoint);
kro_out.precision(15); kro_out.setf(std::ios::scientific | std::ios::showpoint);
//#endif
// Then, compute some upscaled relative permeabilities.
int num_cells = upscaler.grid().size(0);
int num_sats = saturations.size();
for (int i = 0; i < num_sats; ++i) {
// Starting every computation with a trio of uniform profiles.
std::vector<double> init_sat(num_cells, saturations[i]);
const Opm::SparseTable<double>::row_type pdrops = all_pdrops[i];
int num_pdrops = pdrops.size();
for (int j = 0; j < num_pdrops; ++j) {
double pdrop = pdrops[j];
std::pair<permtensor_t, permtensor_t> lambda
= upscaler.upscaleSteadyState(flow_direction, init_sat, saturations[i], pdrop, upscaled_K);
double usat = upscaler.lastSaturationUpscaled();
std::cout << "\n\nTensor of upscaled relperms for initial saturation " << saturations[i]
<< ", real steady-state saturation " << usat
<< " and pressure drop " << pdrop
<< ":\n\n[water]\n" << lambda.first
<< "\n[oil]\n" << lambda.second << std::endl;
// Changing initial saturations for next pressure drop to equal the steady state of the last
init_sat = upscaler.lastSaturationState();
writeRelPerm(krw_out, lambda.first , usat, pdrop);
writeRelPerm(kro_out, lambda.second, usat, pdrop);
}
}
//.........这里部分代码省略.........