本文整理汇总了C++中opm::Watercut类的典型用法代码示例。如果您正苦于以下问题:C++ Watercut类的具体用法?C++ Watercut怎么用?C++ Watercut使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Watercut类的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: outputWaterCut
static void outputWaterCut(const Opm::Watercut& watercut,
const std::string& output_dir)
{
// Write water cut curve.
std::string fname = output_dir + "/watercut.txt";
std::ofstream os(fname.c_str());
if (!os) {
OPM_THROW(std::runtime_error, "Failed to open " << fname);
}
watercut.write(os);
}
示例2: computePorevolume
SimulatorReport SimulatorCompressiblePolymer::Impl::run(SimulatorTimer& timer,
PolymerBlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src(grid_.number_of_cells);
std::vector<double> polymer_inflow_c(grid_.number_of_cells);
// Initialisation.
std::vector<double> initial_pressure;
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double polymass = computePolymerMass(porevol, state.saturation(), state.getCellData( state.CONCENTRATION ), poly_props_.deadPoreVol());
double polymass_adsorbed = computePolymerAdsorbed(grid_, props_, poly_props_, state, rock_comp_props_);
double init_polymass = polymass + polymass_adsorbed;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.pressure(), state.surfacevol(),
state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
initial_pressure = state.pressure();
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, poly_props_, allcells_,
state.pressure(), state.temperature(), state.surfacevol(), state.saturation(),
state.getCellData( state.CONCENTRATION ), state.getCellData( state.CMAX ) ,
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
}
// Stop timer and report
//.........这里部分代码省略.........
示例3: computePorevolume
SimulatorReport SimulatorCompressibleAd::Impl::run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
0.0, well_state.bhp(), well_state.perfRates());
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Solve pressure equation.
if (check_well_controls_) {
computeFractionalFlow(props_, allcells_,
state.pressure(), state.surfacevol(), state.saturation(),
fractional_flows);
wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
}
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
pressure_timer.start();
std::vector<double> initial_pressure = state.pressure();
psolver_.solve(timer.currentStepLength(), state, well_state);
#if 0
// Renormalize pressure if both fluids and rock are
// incompressible, and there are no pressure
// conditions (bcs or wells). It is deemed sufficient
// for now to renormalize using geometric volume
// instead of pore volume.
if (psolver_.singularPressure()) {
// Compute average pressures of previous and last
// step, and total volume.
double av_prev_press = 0.0;
double av_press = 0.0;
double tot_vol = 0.0;
const int num_cells = grid_.number_of_cells;
for (int cell = 0; cell < num_cells; ++cell) {
av_prev_press += initial_pressure[cell]*grid_.cell_volumes[cell];
av_press += state.pressure()[cell]*grid_.cell_volumes[cell];
tot_vol += grid_.cell_volumes[cell];
}
// Renormalization constant
const double ren_const = (av_prev_press - av_press)/tot_vol;
for (int cell = 0; cell < num_cells; ++cell) {
state.pressure()[cell] += ren_const;
}
const int num_wells = (wells_ == NULL) ? 0 : wells_->number_of_wells;
for (int well = 0; well < num_wells; ++well) {
well_state.bhp()[well] += ren_const;
}
//.........这里部分代码省略.........
示例4: computePorevolume
SimulatorReport SimulatorPolymer::Impl::run(SimulatorTimer& timer,
PolymerState& state,
WellState& well_state)
{
std::vector<double> transport_src;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
// Main simulation loop.
Opm::time::StopWatch pressure_timer;
double ptime = 0.0;
Opm::time::StopWatch transport_timer;
double ttime = 0.0;
Opm::time::StopWatch total_timer;
total_timer.start();
double init_satvol[2] = { 0.0 };
double init_polymass = 0.0;
double satvol[2] = { 0.0 };
double polymass = 0.0;
double polymass_adsorbed = 0.0;
double injected[2] = { 0.0 };
double produced[2] = { 0.0 };
double polyinj = 0.0;
double polyprod = 0.0;
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
double tot_polyinj = 0.0;
double tot_polyprod = 0.0;
Opm::computeSaturatedVol(porevol, state.saturation(), init_satvol);
std::cout << "\nInitial saturations are " << init_satvol[0]/tot_porevol_init
<< " " << init_satvol[1]/tot_porevol_init << std::endl;
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
wellreport.push(props_, *wells_, state.saturation(), 0.0, well_state.bhp(), well_state.perfRates());
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
outputState(grid_, state, timer.currentStepNum(), output_dir_);
}
// Solve pressure.
do {
pressure_timer.start();
psolver_.solve(timer.currentStepLength(), state, well_state);
pressure_timer.stop();
double pt = pressure_timer.secsSinceStart();
std::cout << "Pressure solver took: " << pt << " seconds." << std::endl;
ptime += pt;
} while (false);
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
}
// Process transport sources (to include bdy terms and well flows).
Opm::computeTransportSource(grid_, src_, state.faceflux(), 1.0,
wells_, well_state.perfRates(), transport_src);
// Find inflow rate.
const double current_time = timer.currentTime();
double stepsize = timer.currentStepLength();
const double inflowc0 = poly_inflow_(current_time + 1e-5*stepsize);
const double inflowc1 = poly_inflow_(current_time + (1.0 - 1e-5)*stepsize);
if (inflowc0 != inflowc1) {
std::cout << "**** Warning: polymer inflow rate changes during timestep. Using rate near start of step.";
}
const double inflow_c = inflowc0;
// Solve transport.
transport_timer.start();
if (num_transport_substeps_ != 1) {
stepsize /= double(num_transport_substeps_);
std::cout << "Making " << num_transport_substeps_ << " transport substeps." << std::endl;
}
for (int tr_substep = 0; tr_substep < num_transport_substeps_; ++tr_substep) {
tsolver_.solve(&state.faceflux()[0], &porevol[0], &transport_src[0], stepsize, inflow_c,
state.saturation(), state.concentration(), state.maxconcentration());
Opm::computeInjectedProduced(props_, poly_props_,
state.saturation(), state.concentration(), state.maxconcentration(),
transport_src, timer.currentStepLength(), inflow_c,
injected, produced, polyinj, polyprod);
if (use_segregation_split_) {
tsolver_.solveGravity(columns_, &porevol[0], stepsize,
state.saturation(), state.concentration(), state.maxconcentration());
//.........这里部分代码省略.........
示例5: tstep_os
SimulatorReport SimulatorFullyImplicitCompressiblePolymer::Impl::run(SimulatorTimer& timer,
PolymerBlackoilState& state)
{
WellStateFullyImplicitBlackoil prev_well_state;
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
std::vector<double> initial_porevol = porevol;
std::vector<double> polymer_inflow_c(grid_.number_of_cells);
// Main simulation loop.
Opm::time::StopWatch solver_timer;
double stime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
std::string tstep_filename = output_dir_ + "/step_timing.txt";
std::ofstream tstep_os(tstep_filename.c_str());
//Main simulation loop.
while (!timer.done()) {
#if 0
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
#endif
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
WellsManager wells_manager(eclipse_state_,
timer.currentStepNum(),
Opm::UgGridHelpers::numCells(grid_),
Opm::UgGridHelpers::globalCell(grid_),
Opm::UgGridHelpers::cartDims(grid_),
Opm::UgGridHelpers::dimensions(grid_),
Opm::UgGridHelpers::cell2Faces(grid_),
Opm::UgGridHelpers::beginFaceCentroids(grid_),
props_.permeability());
const Wells* wells = wells_manager.c_wells();
WellStateFullyImplicitBlackoil well_state;
well_state.init(wells, state.blackoilState(), prev_well_state);
//Compute polymer inflow.
std::unique_ptr<PolymerInflowInterface> polymer_inflow_ptr;
if (deck_->hasKeyword("WPOLYMER")) {
if (wells_manager.c_wells() == 0) {
OPM_THROW(std::runtime_error, "Cannot control polymer injection via WPOLYMER without wells.");
}
polymer_inflow_ptr.reset(new PolymerInflowFromDeck(deck_, eclipse_state_, *wells, Opm::UgGridHelpers::numCells(grid_), timer.currentStepNum()));
} else {
polymer_inflow_ptr.reset(new PolymerInflowBasic(0.0*Opm::unit::day,
1.0*Opm::unit::day,
0.0));
}
std::vector<double> polymer_inflow_c(Opm::UgGridHelpers::numCells(grid_));
polymer_inflow_ptr->getInflowValues(timer.simulationTimeElapsed(),
timer.simulationTimeElapsed() + timer.currentStepLength(),
polymer_inflow_c);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
}
if (output_) {
if (timer.currentStepNum() == 0) {
output_writer_.writeInit(timer);
}
output_writer_.writeTimeStep(timer, state.blackoilState(), well_state);
}
// Run solver.
solver_timer.start();
FullyImplicitCompressiblePolymerSolver solver(grid_, props_, geo_, rock_comp_props_, polymer_props_, *wells_manager.c_wells(), linsolver_);
solver.step(timer.currentStepLength(), state, well_state, polymer_inflow_c);
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
// Update pore volumes if rock is compressible.
if (rock_comp_props_ && rock_comp_props_->isActive()) {
initial_porevol = porevol;
//.........这里部分代码省略.........
示例6: computePorevolume
SimulatorReport SimulatorFullyImplicitBlackoil::Impl::run(SimulatorTimer& timer,
BlackoilState& state,
WellState& well_state)
{
// Initialisation.
std::vector<double> porevol;
if (rock_comp_props_ && rock_comp_props_->isActive()) {
computePorevolume(grid_, props_.porosity(), *rock_comp_props_, state.pressure(), porevol);
} else {
computePorevolume(grid_, props_.porosity(), porevol);
}
// const double tot_porevol_init = std::accumulate(porevol.begin(), porevol.end(), 0.0);
std::vector<double> initial_porevol = porevol;
// Main simulation loop.
Opm::time::StopWatch solver_timer;
double stime = 0.0;
Opm::time::StopWatch step_timer;
Opm::time::StopWatch total_timer;
total_timer.start();
#if 0
// These must be changed for three-phase.
double init_surfvol[2] = { 0.0 };
double inplace_surfvol[2] = { 0.0 };
double tot_injected[2] = { 0.0 };
double tot_produced[2] = { 0.0 };
Opm::computeSaturatedVol(porevol, state.surfacevol(), init_surfvol);
Opm::Watercut watercut;
watercut.push(0.0, 0.0, 0.0);
Opm::WellReport wellreport;
#endif
std::vector<double> fractional_flows;
std::vector<double> well_resflows_phase;
if (wells_) {
well_resflows_phase.resize((wells_->number_of_phases)*(wells_->number_of_wells), 0.0);
#if 0
wellreport.push(props_, *wells_,
state.pressure(), state.surfacevol(), state.saturation(),
0.0, well_state.bhp(), well_state.perfRates());
#endif
}
std::fstream tstep_os;
if (output_) {
std::string filename = output_dir_ + "/step_timing.param";
tstep_os.open(filename.c_str(), std::fstream::out | std::fstream::app);
}
for (; !timer.done(); ++timer) {
// Report timestep and (optionally) write state to disk.
step_timer.start();
timer.report(std::cout);
if (output_ && (timer.currentStepNum() % output_interval_ == 0)) {
if (output_vtk_) {
outputStateVtk(grid_, state, timer.currentStepNum(), output_dir_);
}
outputStateMatlab(grid_, state, timer.currentStepNum(), output_dir_);
outputWellStateMatlab(well_state,timer.currentStepNum(), output_dir_);
}
SimulatorReport sreport;
// Solve pressure equation.
// if (check_well_controls_) {
// computeFractionalFlow(props_, allcells_,
// state.pressure(), state.surfacevol(), state.saturation(),
// fractional_flows);
// wells_manager_.applyExplicitReinjectionControls(well_resflows_phase, well_resflows_phase);
// }
bool well_control_passed = !check_well_controls_;
int well_control_iteration = 0;
do {
// Run solver.
solver_timer.start();
std::vector<double> initial_pressure = state.pressure();
solver_.step(timer.currentStepLength(), state, well_state);
// Stop timer and report.
solver_timer.stop();
const double st = solver_timer.secsSinceStart();
std::cout << "Fully implicit solver took: " << st << " seconds." << std::endl;
stime += st;
sreport.pressure_time = st;
// Optionally, check if well controls are satisfied.
if (check_well_controls_) {
Opm::computePhaseFlowRatesPerWell(*wells_,
well_state.perfRates(),
fractional_flows,
well_resflows_phase);
std::cout << "Checking well conditions." << std::endl;
// For testing we set surface := reservoir
well_control_passed = wells_manager_.conditionsMet(well_state.bhp(), well_resflows_phase, well_resflows_phase);
++well_control_iteration;
if (!well_control_passed && well_control_iteration > max_well_control_iterations_) {
OPM_THROW(std::runtime_error, "Could not satisfy well conditions in " << max_well_control_iterations_ << " tries.");
}
if (!well_control_passed) {
std::cout << "Well controls not passed, solving again." << std::endl;
} else {
std::cout << "Well conditions met." << std::endl;
//.........这里部分代码省略.........