本文整理汇总了C++中nox::abstract::multivector::DenseMatrix::values方法的典型用法代码示例。如果您正苦于以下问题:C++ DenseMatrix::values方法的具体用法?C++ DenseMatrix::values怎么用?C++ DenseMatrix::values使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类nox::abstract::multivector::DenseMatrix
的用法示例。
在下文中一共展示了DenseMatrix::values方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
void
LOCA::BorderedSolver::HouseholderQR::applyCompactWY(
const NOX::Abstract::MultiVector::DenseMatrix& Y1,
const NOX::Abstract::MultiVector& Y2,
const NOX::Abstract::MultiVector::DenseMatrix& T,
NOX::Abstract::MultiVector::DenseMatrix& X1,
NOX::Abstract::MultiVector& X2,
bool isZeroX1, bool isZeroX2,
bool useTranspose) const
{
if (isZeroX1 && isZeroX2) {
X1.putScalar(0.0);
X2.init(0.0);
return;
}
int m = Y2.numVectors();
Teuchos::ETransp T_flag;
if (useTranspose)
T_flag = Teuchos::TRANS;
else
T_flag = Teuchos::NO_TRANS;
NOX::Abstract::MultiVector::DenseMatrix tmp(m, X2.numVectors());
// Compute Y1^T*X1 + Y2^T*X2
if (!isZeroX2)
X2.multiply(1.0, Y2, tmp);
// Opportunity for optimization here since Y1 is a lower-triangular
// matrix with unit diagonal
if (!isZeroX2 && !isZeroX1)
tmp.multiply(Teuchos::TRANS, Teuchos::NO_TRANS, 1.0, Y1, X1, 1.0);
else if (!isZeroX1)
tmp.multiply(Teuchos::TRANS, Teuchos::NO_TRANS, 1.0, Y1, X1, 0.0);
// Compute op(T)*(Y1^T*X1 + Y2^T*X2)
dblas.TRMM(Teuchos::LEFT_SIDE, Teuchos::UPPER_TRI, T_flag,
Teuchos::NON_UNIT_DIAG, tmp.numRows(), tmp.numCols(), 1.0,
T.values(), T.numRows(), tmp.values(), tmp.numRows());
// Compute X1 = X1 + Y1*op(T)*(Y1^T*X1 + Y2^T*X2)
// Opportunity for optimization here since Y1 is a lower-triangular
// matrix with unit diagonal
if (isZeroX1)
X1.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, Y1, tmp, 0.0);
else
X1.multiply(Teuchos::NO_TRANS, Teuchos::NO_TRANS, 1.0, Y1, tmp, 1.0);
// Compute X2 = X2 + Y1*op(T)*(Y1^T*X1 + Y2^T*X2)
if (isZeroX2)
X2.update(Teuchos::NO_TRANS, 1.0, Y2, tmp, 0.0);
else
X2.update(Teuchos::NO_TRANS, 1.0, Y2, tmp, 1.0);
}
示例2:
void
NOX::Thyra::MultiVector::
multiply(double alpha,
const NOX::Abstract::MultiVector& y,
NOX::Abstract::MultiVector::DenseMatrix& b) const
{
const NOX::Thyra::MultiVector& yy =
dynamic_cast<const NOX::Thyra::MultiVector&>(y);
int m = b.numRows();
int n = b.numCols();
Teuchos::RCP< ::Thyra::MultiVectorBase<double> > bb =
::Thyra::createMembersView(
yy.thyraMultiVec->domain(),
RTOpPack::SubMultiVectorView<double>(0, m, 0, n,
Teuchos::arcp(b.values(), 0, b.stride()*b.numCols(), false),
b.stride()
)
);
::Thyra::apply(*yy.thyraMultiVec, ::Thyra::CONJTRANS, *thyraMultiVec,
bb.ptr(), alpha, 0.0);
}
示例3: T
NOX::Abstract::Group::ReturnType
LOCA::BorderedSolver::LowerTriangularBlockElimination::
solve(Teuchos::ParameterList& params,
const LOCA::BorderedSolver::AbstractOperator& op,
const LOCA::MultiContinuation::ConstraintInterface& B,
const NOX::Abstract::MultiVector::DenseMatrix& C,
const NOX::Abstract::MultiVector* F,
const NOX::Abstract::MultiVector::DenseMatrix* G,
NOX::Abstract::MultiVector& X,
NOX::Abstract::MultiVector::DenseMatrix& Y) const
{
string callingFunction =
"LOCA::BorderedSolver::LowerTriangularBlockElimination::solve()";
NOX::Abstract::Group::ReturnType finalStatus = NOX::Abstract::Group::Ok;
NOX::Abstract::Group::ReturnType status;
// Determine if X or Y is zero
bool isZeroF = (F == NULL);
bool isZeroG = (G == NULL);
bool isZeroB = B.isDXZero();
bool isZeroX = isZeroF;
bool isZeroY = isZeroG && (isZeroB || isZeroX);
// First compute X
if (isZeroX)
X.init(0.0);
else {
// Solve X = J^-1 F, note F must be nonzero
status = op.applyInverse(params, *F, X);
finalStatus =
globalData->locaErrorCheck->combineAndCheckReturnTypes(status,
finalStatus,
callingFunction);
}
// Now compute Y
if (isZeroY)
Y.putScalar(0.0);
else {
// Compute G - B^T*X and store in Y
if (isZeroG)
B.multiplyDX(-1.0, X, Y);
else {
Y.assign(*G);
if (!isZeroB && !isZeroX) {
NOX::Abstract::MultiVector::DenseMatrix T(Y.numRows(),Y.numCols());
B.multiplyDX(1.0, X, T);
Y -= T;
}
}
// Overwrite Y with Y = C^-1 * (G - B^T*X)
NOX::Abstract::MultiVector::DenseMatrix M(C);
int *ipiv = new int[M.numRows()];
Teuchos::LAPACK<int,double> L;
int info;
L.GETRF(M.numRows(), M.numCols(), M.values(), M.stride(), ipiv, &info);
if (info != 0) {
status = NOX::Abstract::Group::Failed;
finalStatus =
globalData->locaErrorCheck->combineAndCheckReturnTypes(
status,
finalStatus,
callingFunction);
}
L.GETRS('N', M.numRows(), Y.numCols(), M.values(), M.stride(), ipiv,
Y.values(), Y.stride(), &info);
delete [] ipiv;
if (info != 0) {
status = NOX::Abstract::Group::Failed;
finalStatus =
globalData->locaErrorCheck->combineAndCheckReturnTypes(
status,
finalStatus,
callingFunction);
}
}
return finalStatus;
}
示例4: R
//.........这里部分代码省略.........
double beta;
int m = B.numVectors();
// Initialize
Y1.putScalar(0.0);
T.putScalar(0.0);
Y2 = B;
if (use_c_transpose) {
for (int i=0; i<m; i++)
for (int j=0; j<m; j++)
R(i,j) = C(j,i); // Copy transpose of C into R
}
else
R.assign(C);
// A temporary vector
Teuchos::RCP<NOX::Abstract::MultiVector> v2 = Y2.clone(1);
Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> v1;
Teuchos::RCP<NOX::Abstract::MultiVector> h2;
Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> h1;
Teuchos::RCP<NOX::Abstract::MultiVector> y2;
Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> y1;
Teuchos::RCP<NOX::Abstract::MultiVector::DenseMatrix> z;
std::vector<int> h_idx;
std::vector<int> y_idx;
y_idx.reserve(m);
for (int i=0; i<m; i++) {
// Create view of column i of Y1 starting at row i
v1 =
Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View,
Y1,
m-i,
1, i, i));
// Create view of columns i through m-1 of Y2
h_idx.resize(m-i);
for (unsigned int j=0; j<h_idx.size(); j++)
h_idx[j] = i+j;
h2 = Y2.subView(h_idx);
// Create view of columns i thru m-1 of R, starting at row i
h1 =
Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View,
R,
m-i,
m-i,
i, i));
if (i > 0) {
// Create view of columns 0 through i-1 of Y2
y_idx.push_back(i-1);
y2 = Y2.subView(y_idx);
// Create view of columns 0 through i-1 of Y1, starting at row i
y1 =
Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View,
Y1,
m-i,
i, i, 0));
// Create view of column i, row 0 through i-1 of T
z =
Teuchos::rcp(new NOX::Abstract::MultiVector::DenseMatrix(Teuchos::View,
T,
i,
1,
0, i));
}
// Compute Householder Vector
computeHouseholderVector(i, R, Y2, *v1, *v2, beta);
// Apply Householder reflection
applyHouseholderVector(*v1, *v2, beta, *h1, *h2);
// Copy v2 into Y2
Y2[i] = (*v2)[0];
T(i,i) = -beta;
if (i > 0) {
// Compute z = y2^T * v2
v2->multiply(1.0, *y2, *z);
// Compute z = -beta * (z + y1^T * v1)
z->multiply(Teuchos::TRANS, Teuchos::NO_TRANS, -beta, *y1, *v1, -beta);
// Compute z = T * z
dblas.TRMV(Teuchos::UPPER_TRI, Teuchos::NO_TRANS, Teuchos::NON_UNIT_DIAG,
i, T.values(), m, z->values(), 1);
}
}
}