本文整理汇总了C++中mu::Parser::Eval方法的典型用法代码示例。如果您正苦于以下问题:C++ Parser::Eval方法的具体用法?C++ Parser::Eval怎么用?C++ Parser::Eval使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mu::Parser
的用法示例。
在下文中一共展示了Parser::Eval方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: animation
//plots draw_speed points per frame
void animation() {
// p.DefineVar("theta", &t);
for(int i = 0; (i < speed || speed == 0) && t <= tmax ; i++) {
t += tinc;
r = p.Eval();
plot();
}
}
示例2: evaluate
/**
* Calculate the value of a formula parsed by muParser
* @param parser :: muParser object
* @return calculated value
* @throw InstrumentDefinitionError if parser throws during evaluation
*/
double DetectorEfficiencyCorUser::evaluate(const mu::Parser &parser) const {
try {
return parser.Eval();
} catch (mu::Parser::exception_type &e) {
throw Kernel::Exception::InstrumentDefinitionError(
"Error calculating formula from string. Muparser error message is: " +
e.GetMsg());
}
}
示例3: iiter
/// Calculate emission time for a given detector (L1, t2)
/// and TOF when Emode==Elastic
double ModeratorTzero::CalculateT0elastic(const double &tof, const double &L12,
double &E1, mu::Parser &parser) {
double t0_curr, t0_next;
t0_curr = m_tolTOF; // current iteration emission time
t0_next = 0.0; // next iteration emission time, initialized to zero
size_t iiter(0); // current iteration number
// iterate until convergence in t0 reached
while (std::fabs(t0_curr - t0_next) >= m_tolTOF && iiter < m_niter) {
t0_curr = t0_next;
double v1 = L12 / (tof - t0_curr); // v1 = v2 = v since emode is elastic
E1 = m_convfactor * v1 * v1; // Energy in meV if v1 in meter/microsecond
t0_next = parser.Eval();
iiter++;
}
return t0_next;
}
示例4: outpre
int Network3::run_PLA(double& time, double maxTime, double sampleTime,
double& step, double maxStep, double stepInterval,
mu::Parser& stop_condition, bool print_on_stop,
char* prefix,
bool print_cdat, bool print_func, bool print_save_net, bool print_end_net,
bool additional_pla_output,
bool verbose){
// Output files
string outpre(prefix);
bool print_classif = additional_pla_output;
// ...
// Species file (must exist)
FILE* cdat = NULL;
string cFile = outpre + ".cdat";
if ((cdat = fopen(cFile.c_str(),"r"))){
fclose(cdat);
cdat = fopen(cFile.c_str(),"a");
}
else {
cout << "Error in Network3::run_PLA(): Concentrations file \"" << cFile << "\" doesn't exist. Exiting." << endl;
exit(1);
}
// Observables file (optional)
FILE* gdat = NULL;
string gFile = outpre + ".gdat";
if ((gdat = fopen(gFile.c_str(),"r"))){
fclose(gdat);
gdat = fopen(gFile.c_str(),"a");
}
else{
// cout << "Warning: Groups file \"" << gFile << "\" doesn't exist." << endl;
}
// Functions file (optional)
/* FILE* fdat = NULL;
string fFile = outpre + ".fdat";
if ((fdat = fopen(fFile.c_str(),"r"))){
fclose(fdat);
fdat = fopen(fFile.c_str(),"a");
}
else{
// cout << "Warning: Functions file \"" << fFile << "\" doesn't exist." << endl;
}*/
// PLA-specific output files
FILE* classif = NULL;
if (print_classif){
if ((classif = fopen((outpre+"_classif.pla").c_str(),"r"))){
fclose(classif);
classif = fopen((outpre+"_classif.pla").c_str(),"a");
}
else{
cout << "Error in Network3::run_PLA(): 'print_classif' flag set but classifications file \""
<< (outpre+"_classif.pla") << "\" doesn't exist. Exiting." << endl;
exit(1);
}
}
// ...
// Identify observables involved in functions
vector<unsigned int> funcObs;
for (unsigned int i=0;i < FUNCTION.size();i++){
map<string,double*> var = FUNCTION[i]->first->p->GetUsedVar();
for (unsigned int j=0;j < OBSERVABLE.size();j++){
if (var.find(OBSERVABLE[j]->first->name) != var.end()){
bool already = false;
for (unsigned int k=0;k < funcObs.size() && !already;k++){
if (funcObs[k] == j){
already = true;
}
}
if (!already){ // add to the list
funcObs.push_back(j);
}
}
}
}
// Prepare for simulation
double nextOutputTime = time + sampleTime;
double nextOutputStep = stepInterval;
while (nextOutputStep <= step) nextOutputStep += stepInterval;
bool lastOut = true;
// Simulation loop
// PLA_SIM->rc.forceClassifications(RxnClassifier::EXACT_STOCHASTIC);
string print_net_message;
while (time < maxTime && step < maxStep && !stop_condition.Eval())
{
// Next step
step++;
PLA_SIM->nextStep();
if (PLA_SIM->tau < INFINITY && PLA_SIM->tau > -INFINITY){
time += PLA_SIM->tau;
}
else break;
//.........这里部分代码省略.........
示例5: operator
bool operator()( double &vox, const isis::util::vector4<size_t>& pos ) {
voxBuff = vox; //using parser.DefineVar every time would slow down the evaluation
posBuff = pos;
vox = parser.Eval();
return true;
}