本文整理汇总了C++中mpi::communicator::size方法的典型用法代码示例。如果您正苦于以下问题:C++ communicator::size方法的具体用法?C++ communicator::size怎么用?C++ communicator::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类mpi::communicator
的用法示例。
在下文中一共展示了communicator::size方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: determineBoundary
BoundaryLocation determineBoundary(mpi::communicator& world) {
if(world.rank() == 0 && world.rank() == world.size()-1)
return DOUBLE_BDY;
else if(world.rank() == 0)
return LOWER_BDY;
else if(world.rank() == world.size() - 1)
return UPPER_BDY;
return NO_BDY;
}
示例2: product_mpi
void product_mpi (mpi::communicator world,
real2D* matrix, /* to multiply by */
real1D* vector, /* to be multiplied */
real1D* result, /* result of multiply */
int nr, /* row size */
int nc) /* column size */
{
int lo, hi; /* work controls */
int r, c; /* loop indices */
int rank;
// work
if (get_block_rows_mpi (world, 0, nr, &lo, &hi)) {
for (r = lo; r < hi; r ++) {
result[r] = matrix[r][0] * vector[0];
for (c = 1; c < nc; c++) {
result[r] += matrix[r][c] * vector[c];
}
}
}
// broadcast result
for (rank = 0; rank < world.size (); rank++) {
if (get_block_rows_mpi (world, 0, nr, &lo, &hi, rank)) {
broadcast (world, &result[lo], hi - lo, rank);
}
}
}
示例3: domain
/// compute the array domain of the target array
domain_type domain() const {
auto dims = ref.shape();
long slow_size = first_dim(ref);
if (std::is_same<Tag, mpi::tag::scatter>::value) {
mpi::mpi_broadcast(slow_size, c, root);
dims[0] = mpi::slice_length(slow_size - 1, c.size(), c.rank());
}
if (std::is_same<Tag, mpi::tag::gather>::value) {
if (!all) {
dims[0] = mpi::mpi_reduce(slow_size, c, root); // valid only on root
if (c.rank() != root) dims[0] = 1; // valid only on root
}
else
dims[0] = mpi::mpi_all_reduce(slow_size, c, root); // in this case, it is valid on all nodes
}
// mpi::tag::reduce :do nothing
return domain_type{dims};
}
示例4: part_vertices
ParallelBFS::ParallelBFS(const mpi::communicator &comm,
const NodeList &vertices,
const NodeList &edges) :
comm(comm) {
NodeId part = (NodeId)vertices.size() / comm.size(),
left_vertices = (NodeId)vertices.size() % comm.size(),
first_vertex = 0, first_edge = 0;
NodeList part_vertices((size_t)comm.size());
NodeList first_vertices((size_t)comm.size());
NodeList part_edges((size_t)comm.size());
NodeList first_edges((size_t)comm.size());
NodeList all_description((size_t)(comm.size() << 2));
for (int i = 0; i < comm.size(); ++i) {
NodeId this_part = part + (i < left_vertices);
NodeId last_edge = first_vertex + this_part == vertices.size() ?
(NodeId)edges.size() :
vertices[first_vertex + this_part];
all_description[(i<<2)] = (NodeId)vertices.size();
all_description[(i<<2) + 1] = first_vertices[i] = first_vertex;
all_description[(i<<2) + 2] = part_vertices[i] = this_part;
all_description[(i<<2) + 3] = part_edges[i] = last_edge - first_edge;
first_edges[i] = first_edge;
first_edge = last_edge;
first_vertex += this_part;
}
NodeList description(4);
mpi::scatter(comm, all_description.data(), description.data(), 4, 0);
this->vertex_total_count = description[0];
this->first_vertex = description[1];
this->vertices.resize((size_t)description[2]);
mpi::scatterv(comm, vertices, part_vertices, first_vertices,
this->vertices, 0);
this->edges.resize((size_t)description[3]);
mpi::scatterv(comm, edges, part_edges, first_edges,
this->edges, 0);
prepare();
}
示例5: initialize_new_objects
void initialize_new_objects(mpi::communicator& world,
parameter_t const& P, directory_structure_t const& ds,
geometric_info_t const& gi, object_info_t& oi,
vector<std::vector<std::string> > const &seq, int tt,
vector<CImg<unsigned char> > const& images,
vector<matrix<float> > const& grd,
vector<matrix<float> >& detected_rects)
{
int Ncam = seq.size();
vector<object_trj_t> & trlet_list=oi.trlet_list;
int nobj = trlet_list.size();
int num_new_obj = detected_rects(0).size1();
int T = seq[0].size();
int np = oi.model.size();
int num_scales = P.scales.size();
//std::cout<<"detected_rects="<<detected_rects<<std::endl;
for(int oo=0; oo<num_new_obj; ++oo)
{
int nn = oi.curr_num_obj + oo;
trlet_list(nn).startt = tt;
trlet_list(nn).endt = tt;
trlet_list(nn).state = 1;
trlet_list(nn).trj = vector<matrix<float> >(Ncam);
for(int cam=0; cam<Ncam; ++cam)
{
trlet_list(nn).trj(cam) = scalar_matrix<float>(T, 4, 0);
}
trlet_list(nn).trj_3d = scalar_matrix<float>(T, 2, 0);
trlet_list(nn).hist_p = vector<matrix<float> >(Ncam);
trlet_list(nn).hist_q = vector<matrix<float> >(Ncam);
trlet_list(nn).fscores = vector<matrix<float> >(Ncam);
trlet_list(nn).scores = scalar_matrix<float>(Ncam, T, 0);
vector<candidate_array<Float> > cand_array(Ncam);
for(int cam=0; cam<Ncam; ++cam)
{
trlet_list(nn).fscores(cam) = scalar_matrix<float>(np*2, T, 0);
float w = detected_rects(cam)(oo, 2)-detected_rects(cam)(oo, 0);
float h = detected_rects(cam)(oo, 3)-detected_rects(cam)(oo, 1);
row(trlet_list(nn).trj(cam), tt) = row(detected_rects(cam), oo);
matrix<float> rects;
compute_part_rects(detected_rects(cam)(oo, 0), detected_rects(cam)(oo, 1),
w, h, oi.model, rects);
pmodel_t pmodel;
vector<float> br(row(detected_rects(cam), oo));
rects_to_pmodel_geom(br, gi.horiz_mean, pmodel);
oi.pmodel_list(cam, nn) = pmodel;
//collect_sift(grd(cam), );
matrix<float> hist_p, hist_q;
collect_hist(images(cam), rects, hist_p, hist_q);
trlet_list(nn).hist_p(cam) = hist_p;
trlet_list(nn).hist_q(cam) = hist_q;
matrix<Float> cand_rects;
vector<Float> cand_scale;
matrix<int> cand_ijs;
if(0==world.rank())
{
std::vector<float> sxr, syr;
for(float v=-P.xrange/2; v<=P.xrange/2; v+=P.xstep)
{
sxr.push_back(v);
}
for(float v=-P.yrange/2; v<=P.yrange/2; v+=P.ystep)
{
syr.push_back(v);
}
vector<float> xr(sxr.size()), yr(syr.size());
std::copy(sxr.begin(), sxr.end(), xr.begin());
std::copy(syr.begin(), syr.end(), yr.begin());
float feetx = (trlet_list(nn).trj(cam)(tt, 0)
+trlet_list(nn).trj(cam)(tt, 2))/2;
float feety = trlet_list(nn).trj(cam)(tt, 3);
enumerate_rects_inpoly(images(cam), oi.pmodel_list(cam, nn),
feetx, feety,
xr, yr, P.scales, gi.horiz_mean, gi.horiz_sig,
gi.polys_im(tt, cam),
cand_rects, cand_scale,
cand_ijs, cand_array(cam));
}
mpi::broadcast(world, cand_rects, 0);
//.........这里部分代码省略.........
示例6: find_prime_numbers
/**
* find prime numbers in a range between [2,limit]
*
* http://en.wikipedia.org/wiki/Sieve_of_Atkin
*
* @param limit upper limit
* @param is_prime return a array[limit+1] with a representation of number (if is_prime[n] == true then n is prime, false otherwise)
*/
void find_prime_numbers(mpi::communicator world, int limit, ms_vector *primes) {
int sqrt_limit = ceil(sqrt(limit));
vector<bool> is_prime(limit + 1, false);
vector<vector<bool> > matrix_is_prime(world.size());
is_prime[2] = true;
is_prime[3] = true;
int size = world.size();
// if the number of process > sqrt_limit
if (size > sqrt_limit)
// simulate to have sqrt_limit processes
size = sqrt_limit;
// compute how many numbers scan for each process
int howmuch = sqrt_limit / size;
// compute where the process start to look
int start = 1 + (howmuch * world.rank());
// compute where the process stop to look
int stop = howmuch * (world.rank() + 1);
// if stop is out of limit, set stop as limit
if (stop > limit)
stop = limit;
// execute algorithm
for (int x = start; x <= stop; x++) {
# pragma omp parallel for default(none) shared(sqrt_limit, limit, is_prime, x)
for (int y = 1; y <= sqrt_limit; y++) {
int n = 4 * x * x + y * y;
if (n <= limit && ((n % 12) == 1 || (n % 12) == 5)){
# pragma omp critical
{
is_prime[n] = !is_prime[n];
}
}
n = 3 * x * x + y * y;
if (n <= limit && (n % 12) == 7){
# pragma omp critical
{
is_prime[n] = !is_prime[n];
}
}
n = 3 * x * x - y * y;
if (x > y && n <= limit && (n % 12) == 11){
# pragma omp critical
{
is_prime[n] = !is_prime[n];
}
}
}
}
// gather: receive all generated matrix
mpi::gather(world, is_prime, matrix_is_prime, 0);
// rott process finalize the algorithm
if (world.rank() == 0) {
// take the last update
for (unsigned int i = 1; i < matrix_is_prime.size(); i++) {
# pragma omp parallel for default(none) shared(matrix_is_prime, limit, i)
for (int j = 1; j <= limit; j++) {
if (matrix_is_prime[i - 1][j]) {
# pragma omp critical
{
matrix_is_prime[i][j] = !matrix_is_prime[i][j];
}
}
}
}
// remove the others no prime numbers
int index = matrix_is_prime.size() - 1;
# pragma omp parallel for default(none) shared(sqrt_limit, matrix_is_prime, limit, index)
for (int n = 5; n <= sqrt_limit; n++) {
if (matrix_is_prime[index][n]) {
int k = n * n;
for (int i = k; i <= limit; i += k) {
# pragma omp critical
{
matrix_is_prime[index][i] = false;
}
}
}
}
// put number 2 and 3
//.........这里部分代码省略.........
示例7: simrun_master
//.........这里部分代码省略.........
cout.flush();
--enqueued_bins;
++scheduled_bins;
// initialize binning array
vector<double> q2_currentbin;
vector<double> q4_currentbin;
try {
// try to allocate enough memory ...
q2_currentbin.reserve( par.binwidth );
q4_currentbin.reserve( par.binwidth );
} catch ( bad_alloc ) {
delete rep;
return res;
}
for (unsigned int mcs = 0;mcs < par.binwidth;++mcs ) {
// take care of the slaves
mpiquery_finished_work();
mpiquery_work_requests();
// perform a Monte Carlo step
rep->mcs();
// measure observables
double q2 = 0, q4 = 0;
double thissample_q = rep->Q();
// remember the sample's properties to calculate their mean value
q2 = thissample_q * thissample_q;
q4 = thissample_q * thissample_q * thissample_q * thissample_q;
q2_currentbin.push_back(q2);
q4_currentbin.push_back(q4);
}
q2_binmeans.push_back(
accumulate( q2_currentbin.begin(), q2_currentbin.end(), 0.0 ) /
static_cast<double>( q2_currentbin.size() )
);
q2_currentbin.clear();
--scheduled_bins;
++completed_bins_master;
++completed_bins;
}
++finished_workers;
while ( completed_bins != par.bins ||
static_cast<int>( finished_workers ) < mpicomm.size() ) {
if ( boost::optional<mpi::status> status
= mpicomm.iprobe( mpi::any_source, MSGTAG_S_M_FINISHED_BINS ) ) {
mpicomm.recv( status->source(), MSGTAG_S_M_FINISHED_BINS );
--scheduled_bins;
++completed_bins;
cout << "\n";
cout << '\r' << " Bin " << completed_bins << "/" << par.bins;
cout.flush();
}
if ( boost::optional<mpi::status> status
= mpicomm.iprobe( mpi::any_source, MSGTAG_S_M_REQUEST_BINS ) ) {
// receive the request for more work
mpicomm.recv( status->source(), MSGTAG_S_M_REQUEST_BINS );
// tell him there is no more work
mpicomm.send( status->source(), MSGTAG_M_S_DISPATCHED_BINS, 0 );
++finished_workers;
}
}
assert( enqueued_bins == 0 );
assert( scheduled_bins == 0 );
cout << '\r' << " Bin " << completed_bins << "/" << par.bins << endl;
cout.flush();
// all measurements done ... let's tidy things up
delete rep;
assert( mpicomm.rank() == 0 );
vector< vector<double> > q2_binmeans_collector;
mpi::gather( mpicomm, q2_binmeans, q2_binmeans_collector, 0 );
vector<double> q2_binmeans_all;
for ( auto it = q2_binmeans_collector.begin();
it != q2_binmeans_collector.end();
++it ) {
q2_binmeans_all.insert( q2_binmeans_all.end(), it->begin(), it->end() );
}
double q2 = 0, q4 = 0;
q2 = static_cast<double>(
accumulate( q2_binmeans_all.begin(), q2_binmeans_all.end(), 0.0 )
) / static_cast<double>( q2_binmeans_all.size() );
double B = 0;
B = (3 - q4 / (q2 * q2)) / 2;
res.B = B;
res.success = true;
return res;
}
示例8: ptMag
void
outer_mpi(mpi::communicator world,
pt1D* ptVec, /* vector of points */
real2D* matrix, /* matrix to fill */
real1D* realVec, /* vector to fill */
int n /* size */
){
int lo, hi; /* work controls */
int r, c; /* loop indices */
real d; /* distance */
real d_max_local = -1.0; // maximum distance
real d_max; // maximum distance
bool work; /* do useful work? */
int i, j;
/* all elements except matrix diagonal */
work = get_block_rows_mpi (world, 0, n, &lo, &hi);
if (work) {
for (r = lo; r < hi; r++) {
realVec[r] = ptMag(&(ptVec[r]));
for (c = 0; c < r; c++) {
d = ptDist (&(ptVec[r]), &(ptVec[c]));
if (d > d_max_local) {
d_max_local = d;
}
// fill columns 0 to r only
matrix[r][c] = d;
}
}
}
// reduce to maximum d's
all_reduce (world, d_max_local, d_max, mpi::maximum<real>());
/* matrix diagonal */
d = d_max * n;
if (work) {
for (r = lo; r < hi; r++) {
matrix[r][r] = d;
}
}
// broadcast matrix, realVec
for (i = 0; i < world.size (); i++) {
if (get_block_rows_mpi (world, 0, n, &lo, &hi, i)) {
broadcast (world, &realVec[lo], hi - lo, i);
// broadcast row by row since n may be smaller than MAXEXT
for (j = lo; j < hi; j++) {
broadcast (world, matrix[j], n, i);
}
}
}
// fill in the rest to make symmetric matrix
for (r = 0; r < n; r++) {
for (c = 0; c < r; c++) {
matrix[c][r] = matrix[r][c];
}
}
/* return */
}
示例9: mpi_scatter
/// Scatter a mesh over the communicator c
friend gf_mesh mpi_scatter(gf_mesh m, mpi::communicator c, int root) {
auto m2 = gf_mesh{m.domain(), m.size(), m.positive_only()};
std::tie(m2._first_index_window, m2._last_index_window) = mpi::slice_range(m2._first_index, m2._last_index, c.size(), c.rank());
return m2;
}
示例10: mandel_mpi
void mandel_mpi (mpi::communicator world,
int2D* matrix, /* to fill */
int nr, /* row size */
int nc, /* column size */
real base_x, /* lower left corner */
real base_y, /* lower left corner */
real ext_x, /* extent */
real ext_y) /* extent */
{
int r, c; /* row and column indices */
real dx, dy; /* per-step deltas */
#if GRAPHICS
int gfxCount = 0; /* number of times graphics called */
#endif
int row_count = 0;
int i;
mpi::status status;
int source;
const int WORK_REQUEST_TAG = 0;
const int WORK_RESPONSE_TAG = 1;
const int NO_MORE_WORK = -1;
int processed_rows = 0;
dx = ext_x / (nr - 1);
dy = ext_y / (nc - 1);
if (world.size () > 1) {
if (world.rank () == 0) {
// control process
// send out work
while (row_count < nr) {
status = world.recv (mpi::any_source, WORK_REQUEST_TAG);
source = status.source ();
// send next row
world.isend (source, WORK_RESPONSE_TAG, row_count);
row_count++;
}
// send out no more work
for (i = 1; i < world.size (); i++) {
status = world.recv (mpi::any_source, WORK_REQUEST_TAG);
source = status.source ();
world.isend (source, WORK_RESPONSE_TAG, NO_MORE_WORK);
}
// receive results
for (r = 0; r < nr; r++) {
world.recv (mpi::any_source, r + 1, matrix[r], nc);
}
}
else {
// work process
while (true) {
// request next row
world.send (0, WORK_REQUEST_TAG);
world.recv (0, WORK_RESPONSE_TAG, r);
if (r != NO_MORE_WORK) {
for (c = 0; c < nc; c++) {
matrix[r][c] = mandel_calc_mpi (base_x + (r * dx), base_y + (c * dy));
}
processed_rows++;
// send results
world.isend (0, r + 1, matrix[r], nc);
}
else {
break;
}
}
#if defined(TEST_OUTPUT) || defined(TEST_TIME)
printf ("processed rows: %d\n", processed_rows);
#endif
}
// broadcast matrix
for (r = 0; r < nr; r++) {
broadcast (world, matrix[r], nc, 0);
}
}
else {
for (r = 0; r < nr; r++) {
for (c = 0; c < nc; c++) {
matrix[r][c] = mandel_calc_mpi (base_x + (r * dx), base_y + (c * dy));
}
}
}
#if GRAPHICS
gfx_mandel(gfxCount++, matrix, nr, nc);
#endif
/* return */
}