当前位置: 首页>>代码示例>>C++>>正文


C++ Vector::nrm2方法代码示例

本文整理汇总了C++中math::Vector::nrm2方法的典型用法代码示例。如果您正苦于以下问题:C++ Vector::nrm2方法的具体用法?C++ Vector::nrm2怎么用?C++ Vector::nrm2使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在math::Vector的用法示例。


在下文中一共展示了Vector::nrm2方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: ray_inv_sphere_bfc

    //! \brief A ray-inverse_sphere intersection test with backface culling.
    //!
    //! An inverse sphere means an "enclosing" sphere.
    //!
    //! \param T The origin of the ray relative to the inverse sphere
    //! center.
    //! \param D The direction/velocity of the ray.
    //! \param d The diameter of the inverse sphere.
    //! \return The time until the intersection, or HUGE_VAL if no intersection.
    inline double ray_inv_sphere_bfc(const math::Vector& T,
				     const math::Vector& D,
				     const double& r)
    {
      double D2 = D.nrm2();

      if (D2 == 0) return HUGE_VAL;
      
      double TD = T | D;
      double arg = TD * TD - D2 * (T.nrm2() - r * r);

      if (arg < 0) return HUGE_VAL;

      return (std::sqrt(arg) - TD) / D2;
    }
开发者ID:armando-2011,项目名称:DynamO,代码行数:24,代码来源:ray_sphere.hpp

示例2: ray_sphere_bfc

    //! \brief A ray-sphere intersection test with backface culling.
    //!
    //! \param T The origin of the ray relative to the sphere center.
    //! \param D The direction/velocity of the ray.
    //! \param r The radius of the sphere.
    //! \return The time until the intersection, or HUGE_VAL if no intersection.
    inline double ray_sphere_bfc(const math::Vector& T,
				 const math::Vector& D,
				 const double& r)
    {
      double TD = (T | D);

      if (TD >= 0) return HUGE_VAL;
      
      double c = T.nrm2() - r * r;
      double arg = TD * TD - D.nrm2() * c;
      
      if (arg < 0) return HUGE_VAL;

      return  - c / (TD - std::sqrt(arg));
    }
开发者ID:armando-2011,项目名称:DynamO,代码行数:21,代码来源:ray_sphere.hpp

示例3: ray_rod

    /*! \brief A ray-rod intersection test.
      
      A rod is a cylinder which is not infinite, but of limited
      length. The cylinder is defined using a single base vertex at
      the center of the bottom circular face and an axial vector
      pointing from the base vertex to the top vertex. This test
      ignores the back face of the rod. It is used to detect when a
      ray will enter a rod.
     
      \param T The origin of the ray relative to the base vertex.
      \param D The direction/velocity of the ray.
      \param A The axial vector of the rod.
      \param r Radius of the rod.
      \return The time until the intersection, or HUGE_VAL if no intersection.
    */
    inline double ray_rod(math::Vector T, math::Vector D, const math::Vector& A, const double r)
    {
      double t = ray_cylinder(T, D, A / A.nrm(), r);
      double Tproj = ((T + t * D) | A);
      
      if ((Tproj < 0) || (Tproj > A.nrm2())) return HUGE_VAL;

      return t;
    }
开发者ID:BigMacchia,项目名称:DynamO,代码行数:24,代码来源:ray_rod.hpp

示例4: ray_inv_rod

    /*! \brief A ray-inverse_rod intersection test.
    
      A rod is a cylinder which is not infinite, but of limited
      length. An inverse rod is used to test when a ray will exit a
      rod. The cylinder is defined using a single base vertex at the
      center of the bottom circular face and an axial vector
      pointing from the base vertex to the top vertex. This test
      ignores the back face of the rod.
     
      \param T The origin of the ray relative to the base vertex.
      \param D The direction/velocity of the ray.
      \param A The axial vector of the inverse rod.
      \param r Radius of the inverse rod.

      \tparam always_intersect If true, this will ensure that glancing
      ray's never escape the enclosing sphere by returning the time
      when the ray is nearest the sphere if the ray does not intersect
      the sphere.

      \return The time until the intersection, or HUGE_VAL if no intersection.
    */
    inline double ray_inv_rod(math::Vector T, math::Vector D, const math::Vector& A, const double r)
    {
      double t = ray_inv_cylinder(T, D, A / A.nrm(), r);

      M_throw() << "Confirm that this function is correct";

      double Tproj = ((T + t * D) | A);
      
      if ((Tproj < 0) || (Tproj > A.nrm2())) return HUGE_VAL;

      return t;
    }
开发者ID:BigMacchia,项目名称:DynamO,代码行数:33,代码来源:ray_rod.hpp

示例5: eval

	std::array<double, nderivs> eval(const double dt = 0) const
	{
	  math::Vector u1new = Rodrigues(w1 * dt) * math::Vector(u1);
	  math::Vector u2new = Rodrigues(w2 * dt) * math::Vector(u2);

	  const double colldiam = 0.5 * (_diameter1 + _diameter2);
	  const double growthfactor = 1 + _invgamma * (_t + dt);
	  const math::Vector rij = r12 + dt * v12 + growthfactor * (u1new - u2new);
	  const math::Vector vij = v12 + growthfactor * ((w1 ^ u1new) - (w2 ^ u2new)) + _invgamma * (u1new - u2new);
	  const math::Vector aij = growthfactor * (-w1.nrm2() * u1new + w2.nrm2() * u2new) + 2 * _invgamma * ((w1 ^ u1new) - (w2 ^ u2new));
	  const math::Vector dotaij = growthfactor * (-w1.nrm2() * (w1 ^ u1new) + w2.nrm2() * (w2 ^ u2new)) + 3 * _invgamma * (-w1.nrm2() * u1new + w2.nrm2() * u2new);

	  std::array<double, nderivs> retval;
	  for (size_t i(0); i < nderivs; ++i)
	    switch (first_deriv + i) {
	    case 0: retval[i] = (rij | rij) - growthfactor * growthfactor * colldiam * colldiam; break;
	    case 1: retval[i] = 2 * (rij | vij) - 2 * _invgamma * growthfactor * colldiam * colldiam; break;
	    case 2: retval[i] = 2 * vij.nrm2() + 2 * (rij | aij) - 2 * _invgamma * _invgamma * colldiam * colldiam; break;
	    case 3: retval[i] = 6 * (vij | aij) + 2 * (rij | dotaij); break;
	    default:
	      M_throw() << "Invalid access";
	    }
	  return retval;
	}
开发者ID:Bradleydi,项目名称:DynamO,代码行数:24,代码来源:offcentre_spheres.hpp


注:本文中的math::Vector::nrm2方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。