本文整理汇总了C++中instruction::Ptr::getWriteSet方法的典型用法代码示例。如果您正苦于以下问题:C++ Ptr::getWriteSet方法的具体用法?C++ Ptr::getWriteSet怎么用?C++ Ptr::getWriteSet使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类instruction::Ptr
的用法示例。
在下文中一共展示了Ptr::getWriteSet方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: isNopInsn
bool isNopInsn(Instruction::Ptr insn)
{
// TODO: add LEA no-ops
if(insn->getOperation().getID() == e_nop)
return true;
if(insn->getOperation().getID() == e_lea)
{
std::set<Expression::Ptr> memReadAddr;
insn->getMemoryReadOperands(memReadAddr);
std::set<RegisterAST::Ptr> writtenRegs;
insn->getWriteSet(writtenRegs);
if(memReadAddr.size() == 1 && writtenRegs.size() == 1)
{
if(**(memReadAddr.begin()) == **(writtenRegs.begin()))
{
return true;
}
}
// Check for zero displacement
nopVisitor visitor;
// We need to get the src operand
insn->getOperand(1).getValue()->apply(&visitor);
if (visitor.isNop) return true;
}
return false;
}
示例2: calcUsedRegs
/* This does a linear scan to find out which registers are used in the function,
it then stores these registers so the scan only needs to be done once.
It returns true or false based on whether the function is a leaf function,
since if it is not the function could call out to another function that
clobbers more registers so more analysis would be needed */
void parse_func::calcUsedRegs()
{
if (usedRegisters != NULL)
return;
else
{
usedRegisters = new parse_func_registers();
using namespace Dyninst::InstructionAPI;
std::set<RegisterAST::Ptr> writtenRegs;
Function::blocklist & bl = blocks();
Function::blocklist::iterator curBlock = bl.begin();
for( ; curBlock != bl.end(); ++curBlock)
{
InstructionDecoder d(getPtrToInstruction((*curBlock)->start()),
(*curBlock)->size(),
isrc()->getArch());
Instruction::Ptr i;
while(i = d.decode())
{
i->getWriteSet(writtenRegs);
}
}
for(std::set<RegisterAST::Ptr>::const_iterator curReg = writtenRegs.begin();
curReg != writtenRegs.end();
++curReg)
{
MachRegister r = (*curReg)->getID();
if((r & ppc32::GPR) && (r <= ppc32::r13))
{
usedRegisters->generalPurposeRegisters.insert(r & 0xFFFF);
}
else if(((r & ppc32::FPR) && (r <= ppc32::fpr13)) ||
((r & ppc32::FSR) && (r <= ppc32::fsr13)))
{
usedRegisters->floatingPointRegisters.insert(r & 0xFFFF);
}
}
}
return;
}
示例3: FindAllThunks
void IndirectControlFlowAnalyzer::FindAllThunks() {
// Enumuerate every block to find thunk
for (auto bit = reachable.begin(); bit != reachable.end(); ++bit) {
// We intentional treat a getting PC call as a special case that does not
// end a basic block. So, we need to check every instruction to find all thunks
ParseAPI::Block *b = *bit;
const unsigned char* buf =
(const unsigned char*)(b->obj()->cs()->getPtrToInstruction(b->start()));
if( buf == NULL ) {
parsing_printf("%s[%d]: failed to get pointer to instruction by offset\n",FILE__, __LINE__);
return;
}
parsing_printf("Looking for thunk in block [%lx,%lx).", b->start(), b->end());
InstructionDecoder dec(buf, b->end() - b->start(), b->obj()->cs()->getArch());
InsnAdapter::IA_IAPI block(dec, b->start(), b->obj() , b->region(), b->obj()->cs(), b);
while (block.getAddr() < b->end()) {
if (block.getInstruction()->getCategory() == c_CallInsn && block.isThunk()) {
bool valid;
Address addr;
boost::tie(valid, addr) = block.getCFT();
const unsigned char *target = (const unsigned char *) b->obj()->cs()->getPtrToInstruction(addr);
InstructionDecoder targetChecker(target, InstructionDecoder::maxInstructionLength, b->obj()->cs()->getArch());
Instruction::Ptr thunkFirst = targetChecker.decode();
set<RegisterAST::Ptr> thunkTargetRegs;
thunkFirst->getWriteSet(thunkTargetRegs);
for (auto curReg = thunkTargetRegs.begin(); curReg != thunkTargetRegs.end(); ++curReg) {
ThunkInfo t;
t.reg = (*curReg)->getID();
t.value = block.getAddr() + block.getInstruction()->size();
t.value += ThunkAdjustment(t.value, t.reg, b);
t.block = b;
thunks.insert(make_pair(block.getAddr(), t));
parsing_printf("\tfind thunk at %lx, storing value %lx to %s\n", block.getAddr(), t.value , t.reg.name().c_str());
}
}
block.advance();
}
}
}
示例4: if
bool IA_x86Details::handleCall(IA_IAPI& block)
{
parsing_printf("\tchecking call at 0x%lx for thunk\n", block.getAddr());
if(!block.isRealCall())
{
parsing_printf("\tthunk found at 0x%lx, checking for add\n", block.getAddr());
block.advance();
thunkInsn.addrFromInsn = block.getAddr();
Instruction::Ptr addInsn = block.getInstruction();
if(addInsn)
parsing_printf("\tinsn after thunk: %s\n", addInsn->format().c_str());
else
parsing_printf("\tNO INSN after thunk at 0x%lx\n", thunkInsn.addrFromInsn);
if(addInsn)
{
std::set<RegisterAST::Ptr> boundRegs;
if(addInsn->getOperation().getID() == e_pop)
{
addInsn->getWriteSet(boundRegs);
block.advance();
addInsn = block.getInstruction();
}
if(addInsn && ((addInsn->getOperation().getID() == e_add) ||
(addInsn->getOperation().getID() == e_lea)))
{
Expression::Ptr op0 = addInsn->getOperand(0).getValue();
Expression::Ptr op1 = addInsn->getOperand(1).getValue();
for(std::set<RegisterAST::Ptr>::const_iterator curReg = boundRegs.begin();
curReg != boundRegs.end();
++curReg)
{
op0->bind(curReg->get(), Result(u64, 0));
op1->bind(curReg->get(), Result(u64, 0));
}
Result imm = addInsn->getOperand(1).getValue()->eval();
Result imm2 = addInsn->getOperand(0).getValue()->eval();
if(imm.defined)
{
Address thunkDiff = imm.convert<Address>();
parsing_printf("\tsetting thunkInsn.addrFromInsn to 0x%lx (0x%lx + 0x%lx)\n",
thunkInsn.addrFromInsn+thunkDiff, thunkInsn.addrFromInsn, thunkDiff);
thunkInsn.addrOfInsn = block.getPrevAddr();
thunkInsn.addrFromInsn = thunkInsn.addrFromInsn + thunkDiff;
return true;
}
else if(imm2.defined)
{
Address thunkDiff = imm2.convert<Address>();
parsing_printf("\tsetting thunkInsn.addrFromInsn to 0x%lx (0x%lx + 0x%lx)\n",
thunkInsn.addrFromInsn+thunkDiff, thunkInsn.addrFromInsn, thunkDiff);
thunkInsn.addrOfInsn = block.getPrevAddr();
thunkInsn.addrFromInsn = thunkInsn.addrFromInsn + thunkDiff;
return true;
}
else
{
parsing_printf("\tadd insn %s found following thunk at 0x%lx, couldn't bind operands!\n",
addInsn->format().c_str(), thunkInsn.addrFromInsn);
}
}
}
thunkInsn.addrFromInsn = 0;
}
thunkInsn.addrFromInsn = 0;
thunkInsn.addrOfInsn = 0;
thunkInsn.insn.reset();
return false;
}
示例5: calcRWSets
ReadWriteInfo LivenessAnalyzer::calcRWSets(Instruction::Ptr curInsn, Block* blk, Address a)
{
liveness_cerr << "calcRWSets for " << curInsn->format() << " @ " << hex << a << dec << endl;
ReadWriteInfo ret;
ret.read = abi->getBitArray();
ret.written = abi->getBitArray();
ret.insnSize = curInsn->size();
std::set<RegisterAST::Ptr> cur_read, cur_written;
curInsn->getReadSet(cur_read);
curInsn->getWriteSet(cur_written);
liveness_printf("Read registers: \n");
for (std::set<RegisterAST::Ptr>::const_iterator i = cur_read.begin();
i != cur_read.end(); i++)
{
MachRegister cur = (*i)->getID();
if (cur.getArchitecture() == Arch_ppc64)
cur = MachRegister((cur.val() & ~Arch_ppc64) | Arch_ppc32);
liveness_printf("\t%s \n", cur.name().c_str());
MachRegister base = cur.getBaseRegister();
if (cur == x86::flags || cur == x86_64::flags){
if (width == 4){
ret.read[getIndex(x86::of)] = true;
ret.read[getIndex(x86::cf)] = true;
ret.read[getIndex(x86::pf)] = true;
ret.read[getIndex(x86::af)] = true;
ret.read[getIndex(x86::zf)] = true;
ret.read[getIndex(x86::sf)] = true;
ret.read[getIndex(x86::df)] = true;
ret.read[getIndex(x86::tf)] = true;
ret.read[getIndex(x86::nt_)] = true;
}
else {
ret.read[getIndex(x86_64::of)] = true;
ret.read[getIndex(x86_64::cf)] = true;
ret.read[getIndex(x86_64::pf)] = true;
ret.read[getIndex(x86_64::af)] = true;
ret.read[getIndex(x86_64::zf)] = true;
ret.read[getIndex(x86_64::sf)] = true;
ret.read[getIndex(x86_64::df)] = true;
ret.read[getIndex(x86_64::tf)] = true;
ret.read[getIndex(x86_64::nt_)] = true;
}
}
else{
base = changeIfMMX(base);
ret.read[getIndex(base)] = true;
}
}
liveness_printf("Write Registers: \n");
for (std::set<RegisterAST::Ptr>::const_iterator i = cur_written.begin();
i != cur_written.end(); i++) {
MachRegister cur = (*i)->getID();
if (cur.getArchitecture() == Arch_ppc64)
cur = MachRegister((cur.val() & ~Arch_ppc64) | Arch_ppc32);
liveness_printf("\t%s \n", cur.name().c_str());
MachRegister base = cur.getBaseRegister();
if (cur == x86::flags || cur == x86_64::flags){
if (width == 4){
ret.written[getIndex(x86::of)] = true;
ret.written[getIndex(x86::cf)] = true;
ret.written[getIndex(x86::pf)] = true;
ret.written[getIndex(x86::af)] = true;
ret.written[getIndex(x86::zf)] = true;
ret.written[getIndex(x86::sf)] = true;
ret.written[getIndex(x86::df)] = true;
ret.written[getIndex(x86::tf)] = true;
ret.written[getIndex(x86::nt_)] = true;
}
else {
ret.written[getIndex(x86_64::of)] = true;
ret.written[getIndex(x86_64::cf)] = true;
ret.written[getIndex(x86_64::pf)] = true;
ret.written[getIndex(x86_64::af)] = true;
ret.written[getIndex(x86_64::zf)] = true;
ret.written[getIndex(x86_64::sf)] = true;
ret.written[getIndex(x86_64::df)] = true;
ret.written[getIndex(x86_64::tf)] = true;
ret.written[getIndex(x86_64::nt_)] = true;
}
}
else{
base = changeIfMMX(base);
ret.written[getIndex(base)] = true;
if ((cur != base && cur.size() < 4) || isMMX(base)) ret.read[getIndex(base)] = true;
}
}
InsnCategory category = curInsn->getCategory();
switch(category)
{
case c_CallInsn:
// Call instructions not at the end of a block are thunks, which are not ABI-compliant.
// So make conservative assumptions about what they may read (ABI) but don't assume they write anything.
ret.read |= (abi->getCallReadRegisters());
if(blk->lastInsnAddr() == a)
{
ret.written |= (abi->getCallWrittenRegisters());
}
break;
//.........这里部分代码省略.........