本文整理汇总了C++中halide::Func类的典型用法代码示例。如果您正苦于以下问题:C++ Func类的具体用法?C++ Func怎么用?C++ Func使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Func类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: prog01
void prog01()
{
Halide::Var x;
Halide::Func init_cond;
init_cond(x) = 1.0f*x;
Halide::Image<float_t> input, output;
input=init_cond.realize(NX);
Halide::ImageParam inPar(Halide::Float(32), 1, "inPar");
Halide::Func cell;
cell(x)=inPar(x)+1;
{
std::vector<Halide::Argument> arg_vect;
arg_vect.push_back(Halide::Argument("inPar", true, Halide::Int(32)));
cell.compile_to_bitcode("stencil-fusion-01.bc", arg_vect, "blur");
}
for (int t =0; t < 100000; ++t) {
inPar.set(input);
output = cell.realize(NX);
swap(output,input);
}
for (int i = 0; i < NX; ++i)
cout << input(i) << " ";
cout << endl;
}
示例2: convolution_layer
Halide::Func convolution_layer(Halide::Func input, Halide::Func weights,
Halide::Func bias, int filter_size, int input_layers, int pool_size) {
// Convolution
Halide::Func convolution;
Halide::Var x, y, z, w;
Halide::RDom r(0, filter_size, 0, filter_size, 0, input_layers);
convolution(x, y, z, w) = 0.0f;
convolution(x, y, z, w) += weights(r.x, r.y, r.z, z) *
input(x + r.x, y + r.y, r.z, w);
// Max pool
Halide::Func subsample;
Halide::RDom s(0, pool_size, 0, pool_size);
subsample(x, y, z, w) = 0.0f;
subsample(x, y, z, w) = Halide::max(convolution(pool_size * x + s.x,
pool_size * y + s.y, z, w), subsample(x, y, z, w));
// Non-linear bias
Halide::Func biased;
biased(x, y, z, w) = tanh(subsample(x, y, z, w) + bias(z, 0));
Halide::Var x_inner, x_outer, y_inner, y_outer;
biased.parallel(w);
biased.tile(x, y, x_outer, y_outer, x_inner, y_inner, VECTORS, 2);
biased.vectorize(x_inner);
biased.unroll(y_inner);
return biased;
}
示例3: main
int main(int argc, char **argv) {
int i, j;
Halide::Func black;
Halide::Func white;
Halide::Var x, y;
black(x, y) = 0;
white(x, y) = 254;
Halide::Image<int32_t> output1 = black.realize(800, 600);
Halide::Image<int32_t> output2 = white.realize(800, 600);
// Save the output for inspection. It should look like a bright parrot.
save(output1, "input1.png");
save(output2, "input2.png");
//Check to see everything is copacetic
for( i = 0; i < 800; i ++ )
{
for( j = 0; j < 600; j ++ )
if (output2(i, j) != 254 || output1(i, j) != 0)
{
printf("Failure! Failed at (%d, %d)\n", i, j);
return 1;
}
}
printf("Success!\n");
return 0;
}
示例4: main
int main(int argc, char **argv) {
Halide::Func theFunc = getFunction();
if (argc >= 3) {
std::vector<Halide::Argument> arguments = theFunc.infer_arguments();
Halide::Target target = Halide::get_target_from_environment();
target.set_feature(Halide::Target::Feature::UserContext);
theFunc.compile_to_object(argv[1] + std::string(".o"), arguments, argv[2], target);
return 0;
}
return 1;
}
示例5: _autotune_timing_stub
inline void _autotune_timing_stub(Halide::Func& func) {
func.compile_jit();
func.infer_input_bounds(1024,1024);
timeval t1, t2;
double rv = 0;
for (int i = 0; i < 3; i++) {
gettimeofday(&t1, NULL);
func.realize(1024,1024);
gettimeofday(&t2, NULL);
double t = (t2.tv_sec - t1.tv_sec) + (t2.tv_usec - t1.tv_usec)/1000000.0;
if(i == 0 || t < rv)
rv = t;
}
printf("{\"time\": %.10f}\n", rv);
exit(0);
}
示例6: fully_connected_layer
Halide::Func fully_connected_layer(Halide::Func input, Halide::Func weights,
Halide::Func bias, int size) {
Halide::Func product;
Halide::Var x, y, z;
Halide::RDom r(0, size);
// Only y = 0 should be used
product(x, y, z) = 0.0f;
product(x, y, z) += weights(r.x, x) * input(r.x, y, z);
product(x, y, z) = tanh(product(x, y, z) + bias(x, 0));
product.vectorize(x, VECTORS);
return product;
}
示例7: func_repr
std::string func_repr(const h::Func &func)
{
std::string repr;
boost::format f("<halide.Func '%s'>");
repr = boost::str(f % func.name());
return repr;
}
示例8: func_compile_to_file0
void func_compile_to_file0(h::Func &that, const std::string &filename_prefix,
const std::vector<h::Argument> &args,
const h::Target &target = h::get_target_from_environment())
{
that.compile_to_file(filename_prefix, args, target);
return;
}
示例9: mat
void NamedWindow::showImage2D(Halide::Image<uint8_t> im)
{
static Halide::Func convert("convertToMat2D");
static Halide::ImageParam ip(Halide::UInt(8), 2);
static Halide::Var x, y;
if (!convert.defined())
{
convert(x, y) = ip(x, y);
convert.vectorize(x, 4).parallel(y, 4);
}
ip.set(im);
cv::Mat mat(im.height(), im.width(), CV_8UC1, cv::Scalar(0));
convert.realize(Halide::Buffer(Halide::UInt(8), im.width(), im.height(), 0, 0, mat.data));
cv::imshow(name, mat);
}
示例10: func_compile_to_header0
void func_compile_to_header0(h::Func &that, const std::string &filename,
const std::vector<h::Argument> &args,
const std::string fn_name = "",
const h::Target &target = h::get_target_from_environment())
{
that.compile_to_header(filename, args, fn_name, target);
return;
}
示例11: func_compile_to_lowered_stmt0
void func_compile_to_lowered_stmt0(h::Func &that,
const std::string &filename,
const std::vector<h::Argument> &args,
h::StmtOutputFormat fmt = h::Text,
const h::Target &target = h::get_target_from_environment())
{
that.compile_to_lowered_stmt(filename, args, fmt, target);
return;
}
示例12: _autotune_timing_stub
inline void _autotune_timing_stub(Halide::Func& func) {
func.compile_jit();
func.infer_input_bounds(AUTOTUNE_N);
timeval t1, t2;
double rv = 0;
const unsigned int timeout = AUTOTUNE_LIMIT;
alarm(timeout);
for (int i = 0; i < AUTOTUNE_TRIALS; i++) {
gettimeofday(&t1, NULL);
func.realize(AUTOTUNE_N);
gettimeofday(&t2, NULL);
alarm(0); // disable alarm
double t = (t2.tv_sec - t1.tv_sec) + (t2.tv_usec - t1.tv_usec)/1000000.0;
if(i == 0 || t < rv)
rv = t;
}
printf("{\"time\": %.10f}\n", rv);
exit(0);
}
示例13: classify
void classify(Halide::Func layer0, Halide::Func *weights,
Halide::Func *bias) {
// Layer 1 -- Convolution
Halide::Func layer1 = convolution_layer(layer0, weights[0], bias[0],
FILTER_SIZE, LAYER0_NODES, POOL_SIZE);
// Layer 2 -- Convolution
Halide::Func layer2 = convolution_layer(layer1, weights[1], bias[1],
FILTER_SIZE, LAYER1_NODES, POOL_SIZE);
// Flatten many feature maps onto a single level for future layers
Halide::Func flattened = flatten(layer2, REDUCE_IMAGE_SIZE);
// Layer 3 -- Fully connected hidden layer
Halide::Func layer3 = fully_connected_layer(flattened, weights[2],
bias[2], LAYER2_NODES * REDUCE_IMAGE_SIZE * REDUCE_IMAGE_SIZE);
// Layer 4 -- Fully connected hidden layer
Halide::Func layer4 = fully_connected_layer(layer3, weights[3],
bias[3], LAYER3_NODES);
// Layer 5 -- Logostic Softmax / classification
Halide::Func layer5 = classification(layer4, LAYER4_NODES);
layer0.compute_root();
layer1.compute_root();
layer2.compute_root();
flattened.compute_root();
layer3.compute_root();
layer4.compute_root();
// Realize to perform computation
Halide::Image<int> output(1, 1, NUM_IMAGES);
layer5.realize(output);
}
示例14: _autotune_timing_stub
inline void _autotune_timing_stub(Halide::Func& func) {
func.compile_jit();
// TODO: this assumes scalar/non-Tuple outputs - should generalize to a Realization
Halide::Type out_type = func.output_types()[0];
buffer_t out_size_buf;
{
// Use the Buffer constructor as a helper to set up the buffer_t,
// but then throw away its allocation which we don't really want.
Halide::Buffer bufinit(out_type, AUTOTUNE_N);
out_size_buf = *bufinit.raw_buffer();
out_size_buf.host = NULL;
}
Halide::Buffer out_size(out_type, &out_size_buf);
assert(out_size.host_ptr() == NULL); // make sure we don't have an allocation
func.infer_input_bounds(out_size);
// allocate the real output using the inferred mins + extents
Halide::Buffer output( out_type,
out_size.extent(0),
out_size.extent(1),
out_size.extent(2),
out_size.extent(3),
NULL,
"output" );
output.set_min( out_size.min(0),
out_size.min(1),
out_size.min(2),
out_size.min(3) );
// re-run input inference on enlarged output buffer
func.unbind_image_params(); // TODO: iterate to convergence
func.infer_input_bounds(output);
timeval t1, t2;
double rv = 0;
const unsigned int timeout = AUTOTUNE_LIMIT;
alarm(timeout);
for (int i = 0; i < AUTOTUNE_TRIALS; i++) {
gettimeofday(&t1, NULL);
func.realize(output);
gettimeofday(&t2, NULL);
alarm(0); // disable alarm
double t = (t2.tv_sec - t1.tv_sec) + (t2.tv_usec - t1.tv_usec)/1000000.0;
if(i == 0 || t < rv)
rv = t;
}
printf("{\"time\": %.10f}\n", rv);
exit(0);
}
示例15: func_compile_jit1
void func_compile_jit1(h::Func &that, const h::Target &target = h::get_target_from_environment())
{
that.compile_jit(target);
return;
}