本文整理汇总了C++中geom::PathVector类的典型用法代码示例。如果您正苦于以下问题:C++ PathVector类的具体用法?C++ PathVector怎么用?C++ PathVector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PathVector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1:
// FIXME: why is 'transform' argument not used?
void
PrintLatex::print_pathvector(SVGOStringStream &os, Geom::PathVector const &pathv_in, const Geom::Affine & /*transform*/)
{
if (pathv_in.empty())
return;
// Geom::Affine tf=transform; // why was this here?
Geom::Affine tf_stack=m_tr_stack.top(); // and why is transform argument not used?
Geom::PathVector pathv = pathv_in * tf_stack; // generates new path, which is a bit slow, but this doesn't have to be performance optimized
os << "\\newpath\n";
for(Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {
os << "\\moveto(" << it->initialPoint()[Geom::X] << "," << it->initialPoint()[Geom::Y] << ")\n";
for(Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
print_2geomcurve(os, *cit);
}
if (it->closed()) {
os << "\\closepath\n";
}
}
}
示例2:
/** Feeds path-creating calls to the cairo context translating them from the PathVector
* One must have done cairo_new_path(ct); before calling this function. */
void
feed_pathvector_to_cairo (cairo_t *ct, Geom::PathVector const &pathv)
{
if (pathv.empty())
return;
for(Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {
feed_path_to_cairo(ct, *it);
}
}
示例3: l
/*
* Converts all segments in all paths to Geom::LineSegment or Geom::HLineSegment or
* Geom::VLineSegment or Geom::CubicBezier.
*/
Geom::PathVector
pathv_to_linear_and_cubic_beziers( Geom::PathVector const &pathv )
{
Geom::PathVector output;
for (Geom::PathVector::const_iterator pit = pathv.begin(); pit != pathv.end(); ++pit) {
output.push_back( Geom::Path() );
output.back().start( pit->initialPoint() );
output.back().close( pit->closed() );
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
if (is_straight_curve(*cit)) {
Geom::LineSegment l(cit->initialPoint(), cit->finalPoint());
output.back().append(l);
} else {
Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
if (curve && curve->order() == 3) {
Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
output.back().append(b);
} else {
// convert all other curve types to cubicbeziers
Geom::Path cubicbezier_path = Geom::cubicbezierpath_from_sbasis(cit->toSBasis(), 0.1);
output.back().append(cubicbezier_path);
}
}
}
}
return output;
}
示例4: main
int main(int argc, char **argv) {
if (argc > 1) {
SVGPathTestPrinter sink;
Geom::parse_svg_path(&*argv[1], sink);
std::cout << "Try real pathsink:" << std::endl;
Geom::PathVector testpath = Geom::parse_svg_path(&*argv[1]);
std::cout << "Geom::PathVector length: " << testpath.size() << std::endl;
if ( !testpath.empty() )
std::cout << "Path curves: " << testpath.front().size() << std::endl;
std::cout << "success!" << std::endl;
}
return 0;
};
示例5: SPCurve
/**
* Returns a list of new curves corresponding to the subpaths in \a curve.
* 2geomified
*/
GSList *
SPCurve::split() const
{
GSList *l = NULL;
for (Geom::PathVector::const_iterator path_it = _pathv.begin(); path_it != _pathv.end(); ++path_it) {
Geom::PathVector newpathv;
newpathv.push_back(*path_it);
SPCurve * newcurve = new SPCurve(newpathv);
l = g_slist_prepend(l, newcurve);
}
return l;
}
示例6: OptRect
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
if (pv.empty())
return Geom::OptRect();
Geom::Point initial = pv.front().initialPoint() * t;
Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith
for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
bbox.expandTo(it->initialPoint() * t);
// don't loop including closing segment, since that segment can never increase the bbox
for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
Geom::Curve const &c = *cit;
unsigned order = 0;
if (Geom::BezierCurve const* b = dynamic_cast<Geom::BezierCurve const*>(&c)) {
order = b->order();
}
if (order == 1) { // line segment
bbox.expandTo(c.finalPoint() * t);
// TODO: we can make the case for quadratics faster by degree elevating them to
// cubic and then taking the bbox of that.
} else if (order == 3) { // cubic bezier
Geom::CubicBezier const &cubic_bezier = static_cast<Geom::CubicBezier const&>(c);
Geom::Point c0 = cubic_bezier[0] * t;
Geom::Point c1 = cubic_bezier[1] * t;
Geom::Point c2 = cubic_bezier[2] * t;
Geom::Point c3 = cubic_bezier[3] * t;
cubic_bbox(c0[0], c0[1], c1[0], c1[1], c2[0], c2[1], c3[0], c3[1], bbox);
} else {
// should handle all not-so-easy curves:
Geom::Curve *ctemp = cit->transformed(t);
bbox.unionWith( ctemp->boundsExact());
delete ctemp;
}
}
}
//return Geom::bounds_exact(pv * t);
return bbox;
}
示例7: ls
/*
* Converts all segments in all paths to Geom::LineSegment. There is an intermediate
* stage where some may be converted to beziers. maxdisp is the maximum displacement from
* the line segment to the bezier curve; ** maxdisp is not used at this moment **.
*
* This is NOT a terribly fast method, but it should give a solution close to the one with the
* fewest points.
*/
Geom::PathVector
pathv_to_linear( Geom::PathVector const &pathv, double /*maxdisp*/)
{
Geom::PathVector output;
Geom::PathVector tmppath = pathv_to_linear_and_cubic_beziers(pathv);
// Now all path segments are either already lines, or they are beziers.
for (Geom::PathVector::const_iterator pit = tmppath.begin(); pit != tmppath.end(); ++pit) {
output.push_back( Geom::Path() );
output.back().start( pit->initialPoint() );
output.back().close( pit->closed() );
for (Geom::Path::const_iterator cit = pit->begin(); cit != pit->end_open(); ++cit) {
if (is_straight_curve(*cit)) {
Geom::LineSegment ls(cit->initialPoint(), cit->finalPoint());
output.back().append(ls);
}
else { /* all others must be Bezier curves */
Geom::BezierCurve const *curve = dynamic_cast<Geom::BezierCurve const *>(&*cit);
Geom::CubicBezier b((*curve)[0], (*curve)[1], (*curve)[2], (*curve)[3]);
std::vector<Geom::Point> bzrpoints = b.points();
Geom::Point A = bzrpoints[0];
Geom::Point B = bzrpoints[1];
Geom::Point C = bzrpoints[2];
Geom::Point D = bzrpoints[3];
std::vector<Geom::Point> pointlist;
pointlist.push_back(A);
recursive_bezier4(
A[X], A[Y],
B[X], B[Y],
C[X], C[Y],
D[X], D[Y],
pointlist,
0);
pointlist.push_back(D);
Geom::Point r1 = pointlist[0];
for (unsigned int i=1; i<pointlist.size();i++){
Geom::Point prev_r1 = r1;
r1 = pointlist[i];
Geom::LineSegment ls(prev_r1, r1);
output.back().append(ls);
}
pointlist.clear();
}
}
}
return output;
}
示例8: main
int main(int argc, char **argv) {
if (argc > 1) {
Geom::PathVector originald = Geom::parse_svg_path(&*argv[1]);
Geom::Piecewise<Geom::D2<Geom::SBasis> > originaldpwd2;
for (unsigned int i=0; i < originald.size(); i++) {
originaldpwd2.concat( originald[i].toPwSb() );
}
Geom::PathVector pattern = Geom::parse_svg_path(&*argv[2]);
Geom::Piecewise<Geom::D2<Geom::SBasis> > patternpwd2;
for (unsigned int i=0; i < pattern.size(); i++) {
patternpwd2.concat( pattern[i].toPwSb() );
}
doEffect_pwd2(originaldpwd2, patternpwd2);
}
return 0;
};
示例9: OptRect
Geom::OptRect
bounds_exact_transformed(Geom::PathVector const & pv, Geom::Affine const & t)
{
if (pv.empty())
return Geom::OptRect();
Geom::Point initial = pv.front().initialPoint() * t;
Geom::Rect bbox(initial, initial); // obtain well defined bbox as starting point to unionWith
for (Geom::PathVector::const_iterator it = pv.begin(); it != pv.end(); ++it) {
bbox.expandTo(it->initialPoint() * t);
// don't loop including closing segment, since that segment can never increase the bbox
for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_open(); ++cit) {
Geom::Curve const &c = *cit;
if( is_straight_curve(c) )
{
bbox.expandTo( c.finalPoint() * t );
}
else if(Geom::CubicBezier const *cubic_bezier = dynamic_cast<Geom::CubicBezier const *>(&c))
{
Geom::Point c0 = (*cubic_bezier)[0] * t;
Geom::Point c1 = (*cubic_bezier)[1] * t;
Geom::Point c2 = (*cubic_bezier)[2] * t;
Geom::Point c3 = (*cubic_bezier)[3] * t;
cubic_bbox( c0[0], c0[1],
c1[0], c1[1],
c2[0], c2[1],
c3[0], c3[1],
bbox );
}
else
{
// should handle all not-so-easy curves:
Geom::Curve *ctemp = cit->transformed(t);
bbox.unionWith( ctemp->boundsExact());
delete ctemp;
}
}
}
//return Geom::bounds_exact(pv * t);
return bbox;
}
示例10: p_start
/* Calculates...
and returns ... in *wind and the distance to ... in *dist.
Returns bounding box in *bbox if bbox!=NULL.
*/
void
pathv_matrix_point_bbox_wind_distance (Geom::PathVector const & pathv, Geom::Affine const &m, Geom::Point const &pt,
Geom::Rect *bbox, int *wind, Geom::Coord *dist,
Geom::Coord tolerance, Geom::Rect const *viewbox)
{
if (pathv.empty()) {
if (wind) *wind = 0;
if (dist) *dist = Geom::infinity();
return;
}
// remember last point of last curve
Geom::Point p0(0,0);
// remembering the start of subpath
Geom::Point p_start(0,0);
bool start_set = false;
for (Geom::PathVector::const_iterator it = pathv.begin(); it != pathv.end(); ++it) {
if (start_set) { // this is a new subpath
if (wind && (p0 != p_start)) // for correct fill picking, each subpath must be closed
geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist);
}
p0 = it->initialPoint() * m;
p_start = p0;
start_set = true;
if (bbox) {
bbox->expandTo(p0);
}
// loop including closing segment if path is closed
for (Geom::Path::const_iterator cit = it->begin(); cit != it->end_default(); ++cit) {
geom_curve_bbox_wind_distance(*cit, m, pt, bbox, wind, dist, tolerance, viewbox, p0);
}
}
if (start_set) {
if (wind && (p0 != p_start)) // for correct picking, each subpath must be closed
geom_line_wind_distance (p0[X], p0[Y], p_start[X], p_start[Y], pt, wind, dist);
}
}
示例11:
void
KnotHolderEntityAttachPt::knot_set(Geom::Point const &p, Geom::Point const &/*origin*/, guint state)
{
using namespace Geom;
LPETangentToCurve* lpe = dynamic_cast<LPETangentToCurve *>(_effect);
Geom::Point const s = snap_knot_position(p, state);
// FIXME: There must be a better way of converting the path's SPCurve* to pwd2.
SPCurve *curve = SP_PATH(item)->get_curve_for_edit();
Geom::PathVector pathv = curve->get_pathvector();
Piecewise<D2<SBasis> > pwd2;
for (unsigned int i=0; i < pathv.size(); i++) {
pwd2.concat(pathv[i].toPwSb());
}
double t0 = nearest_point(s, pwd2);
lpe->t_attach.param_set_value(t0);
// FIXME: this should not directly ask for updating the item. It should write to SVG, which triggers updating.
sp_lpe_item_update_patheffect (SP_LPE_ITEM(item), false, true);
}
示例12:
/*
* interpolate path_in[0] to path_in[1]
*/
Geom::PathVector
LPEInterpolate::doEffect_path (Geom::PathVector const & path_in)
{
if ( (path_in.size() < 2) || (number_of_steps < 2)) {
return path_in;
}
// Don't allow empty path parameter:
if ( trajectory_path.get_pathvector().empty() ) {
return path_in;
}
Geom::PathVector path_out;
Geom::Piecewise<Geom::D2<Geom::SBasis> > pwd2_A = path_in[0].toPwSb();
Geom::Piecewise<Geom::D2<Geom::SBasis> > pwd2_B = path_in[1].toPwSb();
// Transform both paths to (0,0) midpoint, so they can easily be positioned along interpolate_path
if (Geom::OptRect bounds = Geom::bounds_exact(pwd2_A)) {
pwd2_A -= bounds->midpoint();
}
if (Geom::OptRect bounds = Geom::bounds_exact(pwd2_B)) {
pwd2_B -= bounds->midpoint();
}
// Make sure both paths have the same number of segments and cuts at the same locations
pwd2_B.setDomain(pwd2_A.domain());
Geom::Piecewise<Geom::D2<Geom::SBasis> > pA = Geom::partition(pwd2_A, pwd2_B.cuts);
Geom::Piecewise<Geom::D2<Geom::SBasis> > pB = Geom::partition(pwd2_B, pwd2_A.cuts);
Geom::Piecewise<Geom::D2<Geom::SBasis> > trajectory = trajectory_path.get_pathvector()[0].toPwSb();
if (equidistant_spacing)
trajectory = Geom::arc_length_parametrization(trajectory);
Geom::Interval trajectory_domain = trajectory.domain();
for (int i = 0; i < number_of_steps; ++i) {
double fraction = i / (number_of_steps-1);
Geom::Piecewise<Geom::D2<Geom::SBasis> > pResult = pA*(1-fraction) + pB*fraction;
pResult += trajectory.valueAt(trajectory_domain.min() + fraction*trajectory_domain.extent());
Geom::PathVector pathv = Geom::path_from_piecewise(pResult, LPE_CONVERSION_TOLERANCE);
path_out.push_back( pathv[0] );
}
return path_out;
}
示例13: mline
Geom::PathVector
LPEMirrorSymmetry::doEffect_path (Geom::PathVector const & path_in)
{
// Don't allow empty path parameter:
if ( reflection_line.get_pathvector().empty() ) {
return path_in;
}
Geom::PathVector path_out;
if (!discard_orig_path) {
path_out = path_in;
}
Geom::PathVector mline(reflection_line.get_pathvector());
Geom::Point A(mline.front().initialPoint());
Geom::Point B(mline.back().finalPoint());
Geom::Affine m1(1.0, 0.0, 0.0, 1.0, A[0], A[1]);
double hyp = Geom::distance(A, B);
double c = (B[0] - A[0]) / hyp; // cos(alpha)
double s = (B[1] - A[1]) / hyp; // sin(alpha)
Geom::Affine m2(c, -s, s, c, 0.0, 0.0);
Geom::Affine sca(1.0, 0.0, 0.0, -1.0, 0.0, 0.0);
Geom::Affine m = m1.inverse() * m2;
m = m * sca;
m = m * m2.inverse();
m = m * m1;
for (int i = 0; i < static_cast<int>(path_in.size()); ++i) {
path_out.push_back(path_in[i] * m);
}
return path_out;
}
示例14: LoadGlyph
//.........这里部分代码省略.........
POINTFX const *p=polyCurve->apfx;
POINTFX const *endp=p+polyCurve->cpfx;
switch (polyCurve->wType) {
case TT_PRIM_LINE:
while ( p != endp )
path_builder.lineTo(pointfx_to_nrpoint(*p++, scale));
break;
case TT_PRIM_QSPLINE:
{
g_assert(polyCurve->cpfx >= 2);
// The list of points specifies one or more control points and ends with the end point.
// The intermediate points (on the curve) are the points between the control points.
Geom::Point this_control = pointfx_to_nrpoint(*p++, scale);
while ( p+1 != endp ) { // Process all "midpoints" (all points except the last)
Geom::Point new_control = pointfx_to_nrpoint(*p++, scale);
path_builder.quadTo(this_control, (new_control+this_control)/2);
this_control = new_control;
}
Geom::Point end = pointfx_to_nrpoint(*p++, scale);
path_builder.quadTo(this_control, end);
}
break;
case 3: // TT_PRIM_CSPLINE
g_assert(polyCurve->cpfx % 3 == 0);
while ( p != endp ) {
path_builder.curveTo(pointfx_to_nrpoint(p[0], scale),
pointfx_to_nrpoint(p[1], scale),
pointfx_to_nrpoint(p[2], scale));
p += 3;
}
break;
}
curveOffset += sizeof(TTPOLYCURVE)+sizeof(POINTFX)*(polyCurve->cpfx-1);
}
}
polyOffset += polyHeader->cb;
}
doAdd=true;
}
delete [] buffer;
}
#else
if (FT_Load_Glyph (theFace, glyph_id, FT_LOAD_NO_SCALE | FT_LOAD_NO_HINTING | FT_LOAD_NO_BITMAP)) {
// shit happened
} else {
if ( FT_HAS_HORIZONTAL(theFace) ) {
n_g.h_advance=((double)theFace->glyph->metrics.horiAdvance)/((double)theFace->units_per_EM);
n_g.h_width=((double)theFace->glyph->metrics.width)/((double)theFace->units_per_EM);
} else {
n_g.h_width=n_g.h_advance=((double)(theFace->bbox.xMax-theFace->bbox.xMin))/((double)theFace->units_per_EM);
}
if ( FT_HAS_VERTICAL(theFace) ) {
n_g.v_advance=((double)theFace->glyph->metrics.vertAdvance)/((double)theFace->units_per_EM);
n_g.v_width=((double)theFace->glyph->metrics.height)/((double)theFace->units_per_EM);
} else {
n_g.v_width=n_g.v_advance=((double)theFace->height)/((double)theFace->units_per_EM);
}
if ( theFace->glyph->format == ft_glyph_format_outline ) {
FT_Outline_Funcs ft2_outline_funcs = {
ft2_move_to,
ft2_line_to,
ft2_conic_to,
ft2_cubic_to,
0, 0
};
FT2GeomData user(path_builder, 1.0/((double)theFace->units_per_EM));
FT_Outline_Decompose (&theFace->glyph->outline, &ft2_outline_funcs, &user);
}
doAdd=true;
}
#endif
path_builder.finish();
if ( doAdd ) {
Geom::PathVector pv = path_builder.peek();
// close all paths
for (Geom::PathVector::iterator i = pv.begin(); i != pv.end(); ++i) {
i->close();
}
if ( !pv.empty() ) {
n_g.pathvector = new Geom::PathVector(pv);
Geom::OptRect bounds = bounds_exact(*n_g.pathvector);
if (bounds) {
n_g.bbox[0] = bounds->left();
n_g.bbox[1] = bounds->top();
n_g.bbox[2] = bounds->right();
n_g.bbox[3] = bounds->bottom();
}
}
glyphs[nbGlyph]=n_g;
id_to_no[glyph_id]=nbGlyph;
nbGlyph++;
}
} else {
}
}
示例15: while
void
LPESpiro::doEffect(SPCurve * curve)
{
using Geom::X;
using Geom::Y;
// Make copy of old path as it is changed during processing
Geom::PathVector const original_pathv = curve->get_pathvector();
guint len = curve->get_segment_count() + 2;
curve->reset();
bezctx *bc = new_bezctx_ink(curve);
spiro_cp *path = g_new (spiro_cp, len);
int ip = 0;
for(Geom::PathVector::const_iterator path_it = original_pathv.begin(); path_it != original_pathv.end(); ++path_it) {
if (path_it->empty())
continue;
// start of path
{
Geom::Point p = path_it->front().pointAt(0);
path[ip].x = p[X];
path[ip].y = p[Y];
path[ip].ty = '{' ; // for closed paths, this is overwritten
ip++;
}
// midpoints
Geom::Path::const_iterator curve_it1 = path_it->begin(); // incoming curve
Geom::Path::const_iterator curve_it2 = ++(path_it->begin()); // outgoing curve
Geom::Path::const_iterator curve_endit = path_it->end_default(); // this determines when the loop has to stop
if (path_it->closed()) {
// if the path is closed, maybe we have to stop a bit earlier because the closing line segment has zerolength.
const Geom::Curve &closingline = path_it->back_closed(); // the closing line segment is always of type Geom::LineSegment.
if (are_near(closingline.initialPoint(), closingline.finalPoint())) {
// closingline.isDegenerate() did not work, because it only checks for *exact* zero length, which goes wrong for relative coordinates and rounding errors...
// the closing line segment has zero-length. So stop before that one!
curve_endit = path_it->end_open();
}
}
while ( curve_it2 != curve_endit )
{
/* This deals with the node between curve_it1 and curve_it2.
* Loop to end_default (so without last segment), loop ends when curve_it2 hits the end
* and then curve_it1 points to end or closing segment */
Geom::Point p = curve_it1->finalPoint();
path[ip].x = p[X];
path[ip].y = p[Y];
// Determine type of spiro node this is, determined by the tangents (angles) of the curves
// TODO: see if this can be simplified by using /helpers/geom-nodetype.cpp:get_nodetype
bool this_is_line = is_straight_curve(*curve_it1);
bool next_is_line = is_straight_curve(*curve_it2);
Geom::NodeType nodetype = Geom::get_nodetype(*curve_it1, *curve_it2);
if ( nodetype == Geom::NODE_SMOOTH || nodetype == Geom::NODE_SYMM )
{
if (this_is_line && !next_is_line) {
path[ip].ty = ']';
} else if (next_is_line && !this_is_line) {
path[ip].ty = '[';
} else {
path[ip].ty = 'c';
}
} else {
path[ip].ty = 'v';
}
++curve_it1;
++curve_it2;
ip++;
}
// add last point to the spiropath
Geom::Point p = curve_it1->finalPoint();
path[ip].x = p[X];
path[ip].y = p[Y];
if (path_it->closed()) {
// curve_it1 points to the (visually) closing segment. determine the match between first and this last segment (the closing node)
Geom::NodeType nodetype = Geom::get_nodetype(*curve_it1, path_it->front());
switch (nodetype) {
case Geom::NODE_NONE: // can't happen! but if it does, it means the path isn't closed :-)
path[ip].ty = '}';
ip++;
break;
case Geom::NODE_CUSP:
path[0].ty = path[ip].ty = 'v';
break;
case Geom::NODE_SMOOTH:
case Geom::NODE_SYMM:
path[0].ty = path[ip].ty = 'c';
break;
}
} else {
// set type to path closer
path[ip].ty = '}';
//.........这里部分代码省略.........