当前位置: 首页>>代码示例>>C++>>正文


C++ arg_iterator::getName方法代码示例

本文整理汇总了C++中function::arg_iterator::getName方法的典型用法代码示例。如果您正苦于以下问题:C++ arg_iterator::getName方法的具体用法?C++ arg_iterator::getName怎么用?C++ arg_iterator::getName使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在function::arg_iterator的用法示例。


在下文中一共展示了arg_iterator::getName方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: runOnModule

bool LLPE::runOnModule(Module &M) {
  
	vector<int> argv = readInputFile();

	for (Module::iterator F = M.begin(), F_end = M.end(); F != F_end; ++F) {

		for (Function::arg_iterator A = F->arg_begin(), A_end = F->arg_end(); A != A_end; ++A) {
		
			//Search for variables referencing argv
			if (A->getName() == "argv") {
				
				//Iterate through uses of argv
				for (Value::use_iterator U = A->use_begin(), U_end = A->use_end(); U != U_end; ++U) {
					Instruction *User = dyn_cast<Instruction>(*U);
					
					StoreInst *SI = dyn_cast<StoreInst>(User);
					AllocaInst *OrigAlloca = dyn_cast<AllocaInst>(SI->getOperand(1));
					
					for (Value::use_iterator U2 = OrigAlloca->use_begin(), U2_end = OrigAlloca->use_end(); U2 != U2_end; ++U2) {
						Instruction *User2 = dyn_cast<Instruction>(*U2);

						for (Value::use_iterator U3 = User2->use_begin(), U3_end = OrigAlloca->use_end(); U3 != U3_end; ++U3) {
							searchForStoreInstruction(dyn_cast<Instruction>(*U3)->getParent(), argv);
						}
					}

				}
			}
			
		}

	}
   
	return true;
}
开发者ID:abrahamchan,项目名称:LLVMPartialEval,代码行数:35,代码来源:PartialEval.cpp

示例2: dumpStack

void ExecutionState::dumpStack(llvm::raw_ostream &out) const {
  unsigned idx = 0;
  const KInstruction *target = prevPC;
  for (ExecutionState::stack_ty::const_reverse_iterator
         it = stack.rbegin(), ie = stack.rend();
       it != ie; ++it) {
    const StackFrame &sf = *it;
    Function *f = sf.kf->function;
    const InstructionInfo &ii = *target->info;
    out << "\t#" << idx++;
    std::stringstream AssStream;
    AssStream << std::setw(8) << std::setfill('0') << ii.assemblyLine;
    out << AssStream.str();
    out << " in " << f->getName().str() << " (";
    // Yawn, we could go up and print varargs if we wanted to.
    unsigned index = 0;
    for (Function::arg_iterator ai = f->arg_begin(), ae = f->arg_end();
         ai != ae; ++ai) {
      if (ai!=f->arg_begin()) out << ", ";

      out << ai->getName().str();
      // XXX should go through function
      ref<Expr> value = sf.locals[sf.kf->getArgRegister(index++)].value;
      if (value.get() && isa<ConstantExpr>(value))
        out << "=" << value;
    }
    out << ")";
    if (ii.file != "")
      out << " at " << ii.file << ":" << ii.line;
    out << "\n";
    target = sf.caller;
  }
}
开发者ID:tracer-x,项目名称:klee,代码行数:33,代码来源:ExecutionState.cpp

示例3: dump

void StackTrace::dump(std::ostream &out) const {
  unsigned idx = 0;

  for (stack_t::const_iterator it = contents.begin(); it != contents.end(); it++) {
    Function *f = it->first.first->function;
    const InstructionInfo &ii = *it->first.second->info;

    out << "\t#" << idx++
        << " " << std::setw(8) << std::setfill('0') << ii.assemblyLine
        << " in " << f->getName().str() << " (";

    unsigned index = 0;
    for (Function::arg_iterator ai = f->arg_begin(), ae = f->arg_end();
         ai != ae; ++ai) {
      if (ai!=f->arg_begin()) out << ", ";

      out << ai->getName().str();
      // XXX should go through function
      ref<Expr> value = it->second[index++];
      if (isa<ConstantExpr>(value))
        out << "=" << value;
    }
    out << ")";
    if (ii.file != "")
      out << " at " << ii.file << ":" << ii.line;
    out << "\n";
  }
}
开发者ID:Icefroge,项目名称:cloud9,代码行数:28,代码来源:StackTrace.cpp

示例4: get_arg_count

int get_arg_count(const char *name, Function *op)
{
    uint8_t args_present[MAX_ARGS];
    int nb_args, i, n;
    const char *p;

    for(i = 0;i < MAX_ARGS; i++)
        args_present[i] = 0;

    // compute the number of arguments by looking at
    // the uses of the op parameters
    for (Function::arg_iterator i = op->arg_begin(), e = op->arg_end(); i != e; ++i) {
      const char *tmpArgName = i->getName().c_str();
      char *argName = (char *) malloc(strlen(tmpArgName + 1));
      strcpy(argName, tmpArgName);

      if (strstart(argName, "__op_param", &p)) {
	if (i->hasNUsesOrMore(1)) {
	  n = strtoul(p, NULL, 10);
	  if (n > MAX_ARGS)
	    error("too many arguments in %s", name);
	  args_present[n - 1] = 1;
	}
      }
    }

    for (i = 1; i <= MAX_ARGS; i++) {
      char *funcName = (char *) malloc(20);
      sprintf(funcName, "__op_gen_label%d", i);
      Function *f = ops->getFunction(std::string(funcName));
      if (f != NULL) {
	  for (Function::use_iterator j = f->use_begin(), e = f->use_end(); j != e; ++j) {
	      if (Instruction *inst = dyn_cast<Instruction>(*j)) {
		if (inst->getParent()->getParent() == op) {
		  args_present[i - 1] = 1;
		}
	      }
	  }
      } else {
	  std::cout << "symbol not found\n";
      }
    }

    nb_args = 0;
    while (nb_args < MAX_ARGS && args_present[nb_args])
        nb_args++;

    for(i = nb_args; i < MAX_ARGS; i++) {
        if (args_present[i])
            error("inconsistent argument numbering in %s", name);
    }

    return nb_args;
}
开发者ID:ZLeaves,项目名称:llvm-qemu,代码行数:54,代码来源:llvm-dyngen.cpp

示例5: lowerIncomingArguments

/// lowerIncomingArguments - To avoid having to handle incoming arguments
/// specially, we lower each arg to a copy instruction in the entry block. This
/// ensures that the argument value itself cannot be live out of the entry
/// block.
void SjLjEHPrepare::lowerIncomingArguments(Function &F) {
  BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
  while (isa<AllocaInst>(AfterAllocaInsPt) &&
         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
    ++AfterAllocaInsPt;

  for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE;
       ++AI) {
    Type *Ty = AI->getType();

    if (isa<StructType>(Ty) || isa<ArrayType>(Ty)) {
      // Aggregate types can't be cast, but are legal argument types,
      // so we have to handle them differently.  We use
      // select i8 true, %arg, undef to achieve the same goal
      Value *TrueValue = ConstantInt::getTrue(F.getContext());
      Value *UndefValue = UndefValue::get(Ty);
      Instruction *SI = SelectInst::Create(TrueValue, AI, UndefValue,
                                           AI->getName() + ".tmp",
                                           AfterAllocaInsPt);
      AI->replaceAllUsesWith(SI);

      SI->setOperand(1, AI);
    } else {
      // This is always a no-op cast because we're casting AI to AI->getType()
      // so src and destination types are identical. BitCast is the only
      // possibility.
      CastInst *NC = new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
                                     AfterAllocaInsPt);
      AI->replaceAllUsesWith(NC);

      // Set the operand of the cast instruction back to the AllocaInst.
      // Normally it's forbidden to replace a CastInst's operand because it
      // could cause the opcode to reflect an illegal conversion. However, we're
      // replacing it here with the same value it was constructed with.  We do
      // this because the above replaceAllUsesWith() clobbered the operand, but
      // we want this one to remain.
      NC->setOperand(0, AI);
    }
  }
}
开发者ID:edward-jones,项目名称:llvm-or1k,代码行数:44,代码来源:SjLjEHPrepare.cpp

示例6: while

/* for the vi and lsup, find their corresponding argument*/
Value *FindFunctionArgumentOfInstr(Instruction *I, Function *F) {
  int notFound = 1;
  Value *via = 0;

  Function::arg_iterator FI = F->arg_begin(), FE = F->arg_end();
  while (FI != FE && notFound) {
    if (FI->getName() == I->getName()) {
      via = &*FI;
      notFound = 0;
    }
    ++FI;
  }
  return via;
}
开发者ID:davidklaftenegger,项目名称:daedal,代码行数:15,代码来源:HandleVirtualIterators.cpp

示例7: CloneFunctionInto

// Maybe make a clone, if a clone is made, return a pointer to it, if a clone
// was not made return nullptr.
Function *CSDataRando::makeFunctionClone(Function *F) {
  // Now we know how many arguments need to be passed, so we make the clones
  FuncInfo &FI = FunctionInfo[F];
  if (FI.ArgNodes.size() == 0) {
    // No additional args to pass, no need to clone.
    return nullptr;
  }
  // Determine the type of the new function, we insert the new parameters for
  // the masks after the normal arguments, but before any va_args
  Type *MaskTy = TypeBuilder<mask_t, false>::get(F->getContext());
  FunctionType *OldFuncTy = F->getFunctionType();
  std::vector<Type*> ArgTys;
  ArgTys.insert(ArgTys.end(), OldFuncTy->param_begin(), OldFuncTy->param_end());
  ArgTys.insert(ArgTys.end(), FI.ArgNodes.size(), MaskTy);
  FunctionType *CloneFuncTy = FunctionType::get(OldFuncTy->getReturnType(), ArgTys, OldFuncTy->isVarArg());

  Function *Clone = Function::Create(CloneFuncTy, Function::InternalLinkage, F->getName() + "_CONTEXT_SENSITIVE");
  F->getParent()->getFunctionList().insert(F->getIterator(), Clone);

  Function::arg_iterator CI = Clone->arg_begin(), CE = Clone->arg_end();

  // Map the old arguments to the clone arguments and set the name of the
  // clone arguments the same as the original.
  for (Function::arg_iterator i = F->arg_begin(), e = F->arg_end(); i != e && CI != CE; i++, CI++) {
    FI.OldToNewMap[&*i] = &*CI;
    CI->setName(i->getName());
  }

  // Set the name of the arg masks and associate them with the nodes they are
  // the masks for.
  for (unsigned i = 0, e = FI.ArgNodes.size(); i != e; ++i, ++CI) {
    CI->setName("arg_mask");
    FI.ArgMaskMap[FI.ArgNodes[i]] = &*CI;
  }

  SmallVector<ReturnInst*, 8> Returns;
  CloneFunctionInto(Clone, F, FI.OldToNewMap, false, Returns);
  Clone->setCallingConv(F->getCallingConv());

  // Invert OldToNewMap
  for (auto I : FI.OldToNewMap) {
    FI.NewToOldMap[I.second] = I.first;
  }

  NumClones++;
  return Clone;
}
开发者ID:securesystemslab,项目名称:multicompiler,代码行数:49,代码来源:CSDataRando.cpp

示例8: copy_function

void HeterotbbTransform::copy_function (Function* NF, Function* F) {
    DenseMap<const Value*, Value *> ValueMap;
    // Get the names of the parameters for old function
    for(Function::arg_iterator FI = F->arg_begin(), FE=F->arg_end(), DI=NF->arg_begin(); FE!=FI; ++FI,++DI) {
        DI->setName(FI->getName());
        ValueMap[FI]=DI;
    }

    for (Function::const_iterator BI=F->begin(),BE = F->end(); BI != BE; ++BI) {
        const BasicBlock &FBB = *BI;
        BasicBlock *NFBB = BasicBlock::Create(FBB.getContext(), "", NF);
        ValueMap[&FBB] = NFBB;
        if (FBB.hasName()) {
            NFBB->setName(FBB.getName());
            //DEBUG(dbgs()<<NFBB->getName()<<"\n");
        }
        for (BasicBlock::const_iterator II = FBB.begin(), IE = FBB.end(); II != IE; ++II) {
            Instruction *NFInst = II->clone(/*F->getContext()*/);
            if (II->hasName()) NFInst->setName(II->getName());
            const Instruction *FInst = &(*II);
            rewrite_instruction((Instruction *)FInst, NFInst, ValueMap);
            NFBB->getInstList().push_back(NFInst);
            ValueMap[II] = NFInst;
        }
    }
    // Remap the instructions again to take care of forward jumps
    for (Function::iterator BB = NF->begin(), BE=NF->end(); BB != BE; ++ BB) {
        for (BasicBlock::iterator II = BB->begin(); II != BB->end(); ++II) {
            int opIdx = 0;
            //DEBUG(dbgs()<<*II<<"\n");
            for (User::op_iterator i = II->op_begin(), e = II->op_end(); i != e; ++i, opIdx++) {
                Value *V = *i;
                if (ValueMap[V] != NULL) {
                    II->setOperand(opIdx, ValueMap[V]);
                }
            }
        }
    }
    //NF->dump();

}
开发者ID:yyzreal,项目名称:iHRC,代码行数:41,代码来源:HeterotbbTransform.cpp

示例9: lowerIncomingArguments

/// lowerIncomingArguments - To avoid having to handle incoming arguments
/// specially, we lower each arg to a copy instruction in the entry block. This
/// ensures that the argument value itself cannot be live out of the entry
/// block.
void SjLjEHPass::lowerIncomingArguments(Function &F) {
  BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
  while (isa<AllocaInst>(AfterAllocaInsPt) &&
         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
    ++AfterAllocaInsPt;

  for (Function::arg_iterator
         AI = F.arg_begin(), AE = F.arg_end(); AI != AE; ++AI) {
    Type *Ty = AI->getType();

    // Aggregate types can't be cast, but are legal argument types, so we have
    // to handle them differently. We use an extract/insert pair as a
    // lightweight method to achieve the same goal.
    if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) {
      Instruction *EI = ExtractValueInst::Create(AI, 0, "", AfterAllocaInsPt);
      Instruction *NI = InsertValueInst::Create(AI, EI, 0);
      NI->insertAfter(EI);
      AI->replaceAllUsesWith(NI);

      // Set the operand of the instructions back to the AllocaInst.
      EI->setOperand(0, AI);
      NI->setOperand(0, AI);
    } else {
      // This is always a no-op cast because we're casting AI to AI->getType()
      // so src and destination types are identical. BitCast is the only
      // possibility.
      CastInst *NC =
        new BitCastInst(AI, AI->getType(), AI->getName() + ".tmp",
                        AfterAllocaInsPt);
      AI->replaceAllUsesWith(NC);

      // Set the operand of the cast instruction back to the AllocaInst.
      // Normally it's forbidden to replace a CastInst's operand because it
      // could cause the opcode to reflect an illegal conversion. However, we're
      // replacing it here with the same value it was constructed with.  We do
      // this because the above replaceAllUsesWith() clobbered the operand, but
      // we want this one to remain.
      NC->setOperand(0, AI);
    }
  }
}
开发者ID:PhongNgo,项目名称:llvm,代码行数:45,代码来源:SjLjEHPrepare.cpp

示例10: dupFuncArgu

/////////////////////////
//dupFuncArgu()        //
/////////////////////////
void InsDuplica::dupFuncArgu(Function &F) {
   BasicBlock *firstBB = F.begin();
   Instruction *firstI = firstBB->begin();
   for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
         AI != E; ++AI) {
      arguSet.insert(AI);

      //if argument is used only once or all on the same block,
      //do not dup it.
      if (AI->hasOneUse()) {
         valueMap[AI] = AI;
      } else {
         //make copy of cast
         Type *arguType = AI->getType();
         //FIXME unknow signed or not
         CastInst* newCast = CastInst::CreateIntegerCast(AI, arguType, 1, AI->getName()+"_dup", firstI);
         //CastInst *newCast = new CastInst(AI, arguType, AI->getName()+"_dup", firstI);
         valueMap[AI] = newCast;
      }
   }
}
开发者ID:wzzhang-HIT,项目名称:IFDup,代码行数:24,代码来源:InsDuplica.cpp

示例11: lowerIncomingArguments

/// lowerIncomingArguments - To avoid having to handle incoming arguments
/// specially, we lower each arg to a copy instruction in the entry block. This
/// ensures that the argument value itself cannot be live out of the entry
/// block.
void SjLjEHPrepare::lowerIncomingArguments(Function &F) {
  BasicBlock::iterator AfterAllocaInsPt = F.begin()->begin();
  while (isa<AllocaInst>(AfterAllocaInsPt) &&
         isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsPt)->getArraySize()))
    ++AfterAllocaInsPt;

  for (Function::arg_iterator AI = F.arg_begin(), AE = F.arg_end(); AI != AE;
       ++AI) {
    Type *Ty = AI->getType();

    // Use 'select i8 true, %arg, undef' to simulate a 'no-op' instruction.
    Value *TrueValue = ConstantInt::getTrue(F.getContext());
    Value *UndefValue = UndefValue::get(Ty);
    Instruction *SI = SelectInst::Create(TrueValue, AI, UndefValue,
                                         AI->getName() + ".tmp",
                                         AfterAllocaInsPt);
    AI->replaceAllUsesWith(SI);

    // Reset the operand, because it  was clobbered by the RAUW above.
    SI->setOperand(1, AI);
  }
}
开发者ID:A2-Collaboration,项目名称:root,代码行数:26,代码来源:SjLjEHPrepare.cpp

示例12: linkFunctionBody

// linkFunctionBody - Copy the source function over into the dest function and
// fix up references to values.  At this point we know that Dest is an external
// function, and that Src is not.
void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
  assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());

  // Go through and convert function arguments over, remembering the mapping.
  Function::arg_iterator DI = Dst->arg_begin();
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
       I != E; ++I, ++DI) {
    DI->setName(I->getName());  // Copy the name over.

    // Add a mapping to our mapping.
    ValueMap[I] = DI;
  }

  if (Mode == Linker::DestroySource) {
    // Splice the body of the source function into the dest function.
    Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
    
    // At this point, all of the instructions and values of the function are now
    // copied over.  The only problem is that they are still referencing values in
    // the Source function as operands.  Loop through all of the operands of the
    // functions and patch them up to point to the local versions.
    for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
      for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
        RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries, &TypeMap);
    
  } else {
    // Clone the body of the function into the dest function.
    SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
    CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL, &TypeMap);
  }
  
  // There is no need to map the arguments anymore.
  for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
       I != E; ++I)
    ValueMap.erase(I);
  
}
开发者ID:groue,项目名称:llvm,代码行数:40,代码来源:LinkModules.cpp

示例13: SplitCriticalEdge

// First thing we need to do is scan the whole function for values that are
// live across unwind edges.  Each value that is live across an unwind edge
// we spill into a stack location, guaranteeing that there is nothing live
// across the unwind edge.  This process also splits all critical edges
// coming out of invoke's.
void LowerInvoke::
splitLiveRangesLiveAcrossInvokes(std::vector<InvokeInst*> &Invokes) {
  // First step, split all critical edges from invoke instructions.
  for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
    InvokeInst *II = Invokes[i];
    SplitCriticalEdge(II, 0, this);
    SplitCriticalEdge(II, 1, this);
    assert(!isa<PHINode>(II->getNormalDest()) &&
           !isa<PHINode>(II->getUnwindDest()) &&
           "critical edge splitting left single entry phi nodes?");
  }

  Function *F = Invokes.back()->getParent()->getParent();

  // To avoid having to handle incoming arguments specially, we lower each arg
  // to a copy instruction in the entry block.  This ensures that the argument
  // value itself cannot be live across the entry block.
  BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin();
  while (isa<AllocaInst>(AfterAllocaInsertPt) &&
        isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize()))
    ++AfterAllocaInsertPt;
  for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
       AI != E; ++AI) {
    // This is always a no-op cast because we're casting AI to AI->getType() so
    // src and destination types are identical. BitCast is the only possibility.
    CastInst *NC = new BitCastInst(
      AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt);
    AI->replaceAllUsesWith(NC);
    // Normally its is forbidden to replace a CastInst's operand because it
    // could cause the opcode to reflect an illegal conversion. However, we're
    // replacing it here with the same value it was constructed with to simply
    // make NC its user.
    NC->setOperand(0, AI);
  }

  // Finally, scan the code looking for instructions with bad live ranges.
  for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
    for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) {
      // Ignore obvious cases we don't have to handle.  In particular, most
      // instructions either have no uses or only have a single use inside the
      // current block.  Ignore them quickly.
      Instruction *Inst = II;
      if (Inst->use_empty()) continue;
      if (Inst->hasOneUse() &&
          cast<Instruction>(Inst->use_back())->getParent() == BB &&
          !isa<PHINode>(Inst->use_back())) continue;

      // If this is an alloca in the entry block, it's not a real register
      // value.
      if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst))
        if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin())
          continue;

      // Avoid iterator invalidation by copying users to a temporary vector.
      std::vector<Instruction*> Users;
      for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
           UI != E; ++UI) {
        Instruction *User = cast<Instruction>(*UI);
        if (User->getParent() != BB || isa<PHINode>(User))
          Users.push_back(User);
      }

      // Scan all of the uses and see if the live range is live across an unwind
      // edge.  If we find a use live across an invoke edge, create an alloca
      // and spill the value.
      std::set<InvokeInst*> InvokesWithStoreInserted;

      // Find all of the blocks that this value is live in.
      std::set<BasicBlock*> LiveBBs;
      LiveBBs.insert(Inst->getParent());
      while (!Users.empty()) {
        Instruction *U = Users.back();
        Users.pop_back();

        if (!isa<PHINode>(U)) {
          MarkBlocksLiveIn(U->getParent(), LiveBBs);
        } else {
          // Uses for a PHI node occur in their predecessor block.
          PHINode *PN = cast<PHINode>(U);
          for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
            if (PN->getIncomingValue(i) == Inst)
              MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs);
        }
      }

      // Now that we know all of the blocks that this thing is live in, see if
      // it includes any of the unwind locations.
      bool NeedsSpill = false;
      for (unsigned i = 0, e = Invokes.size(); i != e; ++i) {
        BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest();
        if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) {
          NeedsSpill = true;
        }
      }

//.........这里部分代码省略.........
开发者ID:aaasz,项目名称:SHP,代码行数:101,代码来源:LowerInvoke.cpp

示例14: runOnModule

//
// Method: runOnModule()
//
// Description:
//  Entry point for this LLVM pass.
//  Clone functions that take GEPs as arguments
//
// Inputs:
//  M - A reference to the LLVM module to transform
//
// Outputs:
//  M - The transformed LLVM module.
//
// Return value:
//  true  - The module was modified.
//  false - The module was not modified.
//
bool GEPExprArgs::runOnModule(Module& M) {
  bool changed;
  do {
    changed = false;
    for (Module::iterator F = M.begin(); F != M.end(); ++F){
      for (Function::iterator B = F->begin(), FE = F->end(); B != FE; ++B) {
        for (BasicBlock::iterator I = B->begin(), BE = B->end(); I != BE;) {
          CallInst *CI = dyn_cast<CallInst>(I++);
          if(!CI)
            continue;

          if(CI->hasByValArgument())
            continue;
          // if the GEP calls a function, that is externally defined,
          // or might be changed, ignore this call site.
          Function *F = CI->getCalledFunction();

          if (!F || (F->isDeclaration() || F->mayBeOverridden())) 
            continue;
          if(F->hasStructRetAttr())
            continue;
          if(F->isVarArg())
            continue;

          // find the argument we must replace
          Function::arg_iterator ai = F->arg_begin(), ae = F->arg_end();
          unsigned argNum = 1;
          for(; argNum < CI->getNumOperands();argNum++, ++ai) {
            if(ai->use_empty())
              continue;
            if (isa<GEPOperator>(CI->getOperand(argNum)))
              break;
          }

          // if no argument was a GEP operator to be changed 
          if(ai == ae)
            continue;

          GEPOperator *GEP = dyn_cast<GEPOperator>(CI->getOperand(argNum));
          if(!GEP->hasAllConstantIndices())
            continue;

          // Construct the new Type
          // Appends the struct Type at the beginning
          std::vector<Type*>TP;
          TP.push_back(GEP->getPointerOperand()->getType());
          for(unsigned c = 1; c < CI->getNumOperands();c++) {
            TP.push_back(CI->getOperand(c)->getType());
          }

          //return type is same as that of original instruction
          FunctionType *NewFTy = FunctionType::get(CI->getType(), TP, false);
          Function *NewF;
          numSimplified++;
          if(numSimplified > 800) 
            return true;

          NewF = Function::Create(NewFTy,
                                  GlobalValue::InternalLinkage,
                                  F->getName().str() + ".TEST",
                                  &M);

          Function::arg_iterator NI = NewF->arg_begin();
          NI->setName("GEParg");
          ++NI;

          ValueToValueMapTy ValueMap;

          for (Function::arg_iterator II = F->arg_begin(); NI != NewF->arg_end(); ++II, ++NI) {
            ValueMap[II] = NI;
            NI->setName(II->getName());
            NI->addAttr(F->getAttributes().getParamAttributes(II->getArgNo() + 1));
          }
          NewF->setAttributes(NewF->getAttributes().addAttr(
              0, F->getAttributes().getRetAttributes()));
          // Perform the cloning.
          SmallVector<ReturnInst*,100> Returns;
          CloneFunctionInto(NewF, F, ValueMap, false, Returns);
          std::vector<Value*> fargs;
          for(Function::arg_iterator ai = NewF->arg_begin(), 
              ae= NewF->arg_end(); ai != ae; ++ai) {
            fargs.push_back(ai);
          }
//.........这里部分代码省略.........
开发者ID:brills,项目名称:pfpa,代码行数:101,代码来源:GEPExprArgs.cpp

示例15: runOnModule

//
// Method: runOnModule()
//
// Description:
//  Entry point for this LLVM pass.
//  If a function returns a struct, make it return
//  a pointer to the struct.
//
// Inputs:
//  M - A reference to the LLVM module to transform
//
// Outputs:
//  M - The transformed LLVM module.
//
// Return value:
//  true  - The module was modified.
//  false - The module was not modified.
//
bool StructRet::runOnModule(Module& M) {
  const llvm::DataLayout targetData(&M);

  std::vector<Function*> worklist;
  for (Module::iterator I = M.begin(); I != M.end(); ++I)
    if (!I->mayBeOverridden()) {
      if(I->hasAddressTaken())
        continue;
      if(I->getReturnType()->isStructTy()) {
        worklist.push_back(I);
      }
    }

  while(!worklist.empty()) {
    Function *F = worklist.back();
    worklist.pop_back();
    Type *NewArgType = F->getReturnType()->getPointerTo();

    // Construct the new Type
    std::vector<Type*>TP;
    TP.push_back(NewArgType);
    for (Function::arg_iterator ii = F->arg_begin(), ee = F->arg_end();
         ii != ee; ++ii) {
      TP.push_back(ii->getType());
    }

    FunctionType *NFTy = FunctionType::get(F->getReturnType(), TP, F->isVarArg());

    // Create the new function body and insert it into the module.
    Function *NF = Function::Create(NFTy, 
                                    F->getLinkage(),
                                    F->getName(), &M);
    ValueToValueMapTy ValueMap;
    Function::arg_iterator NI = NF->arg_begin();
    NI->setName("ret");
    ++NI;
    for (Function::arg_iterator II = F->arg_begin(); II != F->arg_end(); ++II, ++NI) {
      ValueMap[II] = NI;
      NI->setName(II->getName());
      AttributeSet attrs = F->getAttributes().getParamAttributes(II->getArgNo() + 1);
      if (!attrs.isEmpty())
        NI->addAttr(attrs);
    }
    // Perform the cloning.
    SmallVector<ReturnInst*,100> Returns;
    if (!F->isDeclaration())
      CloneFunctionInto(NF, F, ValueMap, false, Returns);
    std::vector<Value*> fargs;
    for(Function::arg_iterator ai = NF->arg_begin(), 
        ae= NF->arg_end(); ai != ae; ++ai) {
      fargs.push_back(ai);
    }
    NF->setAttributes(NF->getAttributes().addAttributes(
        M.getContext(), 0, F->getAttributes().getRetAttributes()));
    NF->setAttributes(NF->getAttributes().addAttributes(
        M.getContext(), ~0, F->getAttributes().getFnAttributes()));
    
    for (Function::iterator B = NF->begin(), FE = NF->end(); B != FE; ++B) {      
      for (BasicBlock::iterator I = B->begin(), BE = B->end(); I != BE;) {
        ReturnInst * RI = dyn_cast<ReturnInst>(I++);
        if(!RI)
          continue;
        LoadInst *LI = dyn_cast<LoadInst>(RI->getOperand(0));
        assert(LI && "Return should be preceded by a load instruction");
        IRBuilder<> Builder(RI);
        Builder.CreateMemCpy(fargs.at(0),
            LI->getPointerOperand(),
            targetData.getTypeStoreSize(LI->getType()),
            targetData.getPrefTypeAlignment(LI->getType()));
      }
    }

    for(Value::use_iterator ui = F->use_begin(), ue = F->use_end();
        ui != ue; ) {
      CallInst *CI = dyn_cast<CallInst>(*ui++);
      if(!CI)
        continue;
      if(CI->getCalledFunction() != F)
        continue;
      if(CI->hasByValArgument())
        continue;
      AllocaInst *AllocaNew = new AllocaInst(F->getReturnType(), 0, "", CI);
//.........这里部分代码省略.........
开发者ID:cschreiner,项目名称:smack,代码行数:101,代码来源:StructReturnToPointer.cpp


注:本文中的function::arg_iterator::getName方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。