本文整理汇总了C++中expolygons::const_iterator::area方法的典型用法代码示例。如果您正苦于以下问题:C++ const_iterator::area方法的具体用法?C++ const_iterator::area怎么用?C++ const_iterator::area使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类expolygons::const_iterator
的用法示例。
在下文中一共展示了const_iterator::area方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: fopen
void
SLAPrint::write_svg(const std::string &outputfile) const
{
const Sizef3 size = this->bb.size();
const double support_material_radius = sm_pillars_radius();
FILE* f = fopen(outputfile.c_str(), "w");
fprintf(f,
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
"<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n"
"<!-- Generated using Slic3r %s http://slic3r.org/ -->\n"
, size.x, size.y, SLIC3R_VERSION);
for (size_t i = 0; i < this->layers.size(); ++i) {
const Layer &layer = this->layers[i];
fprintf(f,
"\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\" slic3r:slice-z=\"%0.4f\" slic3r:layer-height=\"%0.4f\">\n",
i,
layer.print_z,
layer.slice_z,
layer.print_z - ((i == 0) ? 0. : this->layers[i-1].print_z)
);
if (layer.solid) {
const ExPolygons &slices = layer.slices.expolygons;
for (ExPolygons::const_iterator it = slices.begin(); it != slices.end(); ++it) {
std::string pd = this->_SVG_path_d(*it);
fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n",
pd.c_str(), "white", "black", "0", unscale(unscale(it->area()))
);
}
} else {
// Perimeters.
for (ExPolygons::const_iterator it = layer.perimeters.expolygons.begin();
it != layer.perimeters.expolygons.end(); ++it) {
std::string pd = this->_SVG_path_d(*it);
fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"perimeter\" />\n",
pd.c_str(), "white", "black", "0"
);
}
// Solid infill.
for (ExPolygons::const_iterator it = layer.solid_infill.expolygons.begin();
it != layer.solid_infill.expolygons.end(); ++it) {
std::string pd = this->_SVG_path_d(*it);
fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n",
pd.c_str(), "white", "black", "0"
);
}
// Internal infill.
for (ExtrusionEntitiesPtr::const_iterator it = layer.infill.entities.begin();
it != layer.infill.entities.end(); ++it) {
const ExPolygons infill = union_ex((*it)->grow());
for (ExPolygons::const_iterator e = infill.begin(); e != infill.end(); ++e) {
std::string pd = this->_SVG_path_d(*e);
fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:type=\"infill\" />\n",
pd.c_str(), "white", "black", "0"
);
}
}
}
// don't print support material in raft layers
if (i >= (size_t)this->config.raft_layers) {
// look for support material pillars belonging to this layer
for (std::vector<SupportPillar>::const_iterator it = this->sm_pillars.begin(); it != this->sm_pillars.end(); ++it) {
if (!(it->top_layer >= i && it->bottom_layer <= i)) continue;
// generate a conic tip
float radius = fminf(
support_material_radius,
(it->top_layer - i + 1) * this->config.layer_height.value
);
fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n",
unscale(it->x) - this->bb.min.x,
size.y - (unscale(it->y) - this->bb.min.y),
radius
);
}
}
fprintf(f,"\t</g>\n");
}
fprintf(f,"</svg>\n");
}
示例2: loop
void
PerimeterGenerator::process()
{
// other perimeters
this->_mm3_per_mm = this->perimeter_flow.mm3_per_mm();
coord_t pwidth = this->perimeter_flow.scaled_width();
coord_t pspacing = this->perimeter_flow.scaled_spacing();
// external perimeters
this->_ext_mm3_per_mm = this->ext_perimeter_flow.mm3_per_mm();
coord_t ext_pwidth = this->ext_perimeter_flow.scaled_width();
coord_t ext_pspacing = this->ext_perimeter_flow.scaled_spacing();
coord_t ext_pspacing2 = this->ext_perimeter_flow.scaled_spacing(this->perimeter_flow);
// overhang perimeters
this->_mm3_per_mm_overhang = this->overhang_flow.mm3_per_mm();
// solid infill
coord_t ispacing = this->solid_infill_flow.scaled_spacing();
coord_t gap_area_threshold = pwidth * pwidth;
// Calculate the minimum required spacing between two adjacent traces.
// This should be equal to the nominal flow spacing but we experiment
// with some tolerance in order to avoid triggering medial axis when
// some squishing might work. Loops are still spaced by the entire
// flow spacing; this only applies to collapsing parts.
// For ext_min_spacing we use the ext_pspacing calculated for two adjacent
// external loops (which is the correct way) instead of using ext_pspacing2
// which is the spacing between external and internal, which is not correct
// and would make the collapsing (thus the details resolution) dependent on
// internal flow which is unrelated.
coord_t min_spacing = pspacing * (1 - INSET_OVERLAP_TOLERANCE);
coord_t ext_min_spacing = ext_pspacing * (1 - INSET_OVERLAP_TOLERANCE);
// prepare grown lower layer slices for overhang detection
if (this->lower_slices != NULL && this->config->overhangs) {
// We consider overhang any part where the entire nozzle diameter is not supported by the
// lower layer, so we take lower slices and offset them by half the nozzle diameter used
// in the current layer
double nozzle_diameter = this->print_config->nozzle_diameter.get_at(this->config->perimeter_extruder-1);
this->_lower_slices_p = offset(*this->lower_slices, scale_(+nozzle_diameter/2));
}
// we need to process each island separately because we might have different
// extra perimeters for each one
for (Surfaces::const_iterator surface = this->slices->surfaces.begin();
surface != this->slices->surfaces.end(); ++surface) {
// detect how many perimeters must be generated for this island
signed short loop_number = this->config->perimeters + surface->extra_perimeters;
loop_number--; // 0-indexed loops
Polygons gaps;
Polygons last = surface->expolygon.simplify_p(SCALED_RESOLUTION);
if (loop_number >= 0) { // no loops = -1
std::vector<PerimeterGeneratorLoops> contours(loop_number+1); // depth => loops
std::vector<PerimeterGeneratorLoops> holes(loop_number+1); // depth => loops
Polylines thin_walls;
// we loop one time more than needed in order to find gaps after the last perimeter was applied
for (signed short i = 0; i <= loop_number+1; ++i) { // outer loop is 0
Polygons offsets;
if (i == 0) {
// the minimum thickness of a single loop is:
// ext_width/2 + ext_spacing/2 + spacing/2 + width/2
if (this->config->thin_walls) {
offsets = offset2(
last,
-(ext_pwidth/2 + ext_min_spacing/2 - 1),
+(ext_min_spacing/2 - 1)
);
} else {
offsets = offset(last, -ext_pwidth/2);
}
// look for thin walls
if (this->config->thin_walls) {
Polygons diffpp = diff(
last,
offset(offsets, +ext_pwidth/2),
true // medial axis requires non-overlapping geometry
);
// the following offset2 ensures almost nothing in @thin_walls is narrower than $min_width
// (actually, something larger than that still may exist due to mitering or other causes)
coord_t min_width = ext_pwidth / 2;
ExPolygons expp = offset2_ex(diffpp, -min_width/2, +min_width/2);
// the maximum thickness of our thin wall area is equal to the minimum thickness of a single loop
Polylines pp;
for (ExPolygons::const_iterator ex = expp.begin(); ex != expp.end(); ++ex)
ex->medial_axis(ext_pwidth + ext_pspacing2, min_width, &pp);
double threshold = ext_pwidth * 2;
for (Polylines::const_iterator p = pp.begin(); p != pp.end(); ++p) {
if (p->length() > threshold) {
thin_walls.push_back(*p);
}
//.........这里部分代码省略.........
示例3: while
//.........这里部分代码省略.........
// if we are generating a raft, first_layer_height will not affect mesh slicing
const float lh = this->config.layer_height.value;
const float first_lh = this->config.first_layer_height.value;
// generate the list of Z coordinates for mesh slicing
// (we slice each layer at half of its thickness)
std::vector<float> slice_z, layer_z;
{
const float first_slice_lh = (this->config.raft_layers > 0) ? lh : first_lh;
slice_z.push_back(first_slice_lh/2);
layer_z.push_back(first_slice_lh);
}
while (layer_z.back() + lh/2 <= this->mesh.stl.stats.max.z) {
slice_z.push_back(layer_z.back() + lh/2);
layer_z.push_back(layer_z.back() + lh);
}
// perform the slicing
std::vector<ExPolygons> layers;
TriangleMeshSlicer(&this->mesh).slice(slice_z, &layers);
// generate a solid raft if requested
if (this->config.raft_layers > 0) {
ExPolygons raft = offset_ex(layers.front(), scale_(this->config.raft_offset));
for (int i = this->config.raft_layers; i >= 1; --i) {
layer_z.insert(layer_z.begin(), first_lh + lh * (i-1));
layers.insert(layers.begin(), raft);
}
// prepend total raft height to all sliced layers
for (int i = this->config.raft_layers; i < layer_z.size(); ++i)
layer_z[i] += first_lh + lh * (this->config.raft_layers-1);
}
// generate support material
std::vector<Points> support_material(layers.size());
if (this->config.support_material) {
// generate a grid of points according to the configured spacing,
// covering the entire object bounding box
Points support_material_points;
for (coordf_t x = bb.min.x; x <= bb.max.x; x += this->config.support_material_spacing) {
for (coordf_t y = bb.min.y; y <= bb.max.y; y += this->config.support_material_spacing) {
support_material_points.push_back(Point(scale_(x), scale_(y)));
}
}
// check overhangs, starting from the upper layer, and detect which points apply
// to each layer
ExPolygons overhangs;
for (int i = layer_z.size()-1; i >= 0; --i) {
overhangs = diff_ex(union_(overhangs, layers[i+1]), layers[i]);
for (Points::const_iterator it = support_material_points.begin(); it != support_material_points.end(); ++it) {
for (ExPolygons::const_iterator e = overhangs.begin(); e != overhangs.end(); ++e) {
if (e->contains(*it)) {
support_material[i].push_back(*it);
break;
}
}
}
}
}
double support_material_radius = this->config.support_material_extrusion_width.get_abs_value(this->config.layer_height)/2;
FILE* f = fopen(outputfile.c_str(), "w");
fprintf(f,
"<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"yes\"?>\n"
"<!DOCTYPE svg PUBLIC \"-//W3C//DTD SVG 1.0//EN\" \"http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/svg10.dtd\">\n"
"<svg width=\"%f\" height=\"%f\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:svg=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\" xmlns:slic3r=\"http://slic3r.org/namespaces/slic3r\" viewport-fill=\"black\">\n"
"<!-- Generated using Slic3r %s http://slic3r.org/ -->\n"
, size.x, size.y, SLIC3R_VERSION);
for (size_t i = 0; i < layer_z.size(); ++i) {
fprintf(f, "\t<g id=\"layer%zu\" slic3r:z=\"%0.4f\">\n", i, layer_z[i]);
for (ExPolygons::const_iterator it = layers[i].begin(); it != layers[i].end(); ++it) {
std::string pd;
Polygons pp = *it;
for (Polygons::const_iterator mp = pp.begin(); mp != pp.end(); ++mp) {
std::ostringstream d;
d << "M ";
for (Points::const_iterator p = mp->points.begin(); p != mp->points.end(); ++p) {
d << unscale(p->x) << " ";
d << unscale(p->y) << " ";
}
d << "z";
pd += d.str() + " ";
}
fprintf(f,"\t\t<path d=\"%s\" style=\"fill: %s; stroke: %s; stroke-width: %s; fill-type: evenodd\" slic3r:area=\"%0.4f\" />\n",
pd.c_str(), "white", "black", "0", unscale(unscale(it->area()))
);
}
for (Points::const_iterator it = support_material[i].begin(); it != support_material[i].end(); ++it) {
fprintf(f,"\t\t<circle cx=\"%f\" cy=\"%f\" r=\"%f\" stroke-width=\"0\" fill=\"white\" slic3r:type=\"support\" />\n",
unscale(it->x), unscale(it->y), support_material_radius
);
}
fprintf(f,"\t</g>\n");
}
fprintf(f,"</svg>\n");
}