当前位置: 首页>>代码示例>>C++>>正文


C++ VectorXi::setZero方法代码示例

本文整理汇总了C++中eigen::VectorXi::setZero方法的典型用法代码示例。如果您正苦于以下问题:C++ VectorXi::setZero方法的具体用法?C++ VectorXi::setZero怎么用?C++ VectorXi::setZero使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在eigen::VectorXi的用法示例。


在下文中一共展示了VectorXi::setZero方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: u

IGL_INLINE void igl::PolyVectorFieldFinder<DerivedV, DerivedF>::setFieldFromGeneralCoefficients(const  std::vector<Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1>> &coeffs,
                                                            std::vector<Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2>> &pv)
{
  pv.assign(n, Eigen::Matrix<typename DerivedV::Scalar, Eigen::Dynamic, 2>::Zero(numF, 2));
  for (int i = 0; i <numF; ++i)
  {

    //    poly coefficients: 1, 0, -Acoeff, 0, Bcoeff
    //    matlab code from roots (given there are no trailing zeros in the polynomial coefficients)
    Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> polyCoeff;
    polyCoeff.setZero(2*n+1,1);
    polyCoeff[0] = 1.;
    int sign = 1;
    for (int k =0; k<n; ++k)
    {
      sign = -sign;
      int degree = 2*(k+1);
      polyCoeff[degree] = (1.*sign)*coeffs[k](i);
    }

    Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> roots;
    igl::polyRoots<std::complex<typename DerivedV::Scalar>, typename DerivedV::Scalar >(polyCoeff,roots);

    Eigen::VectorXi done; done.setZero(2*n,1);

    Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic,1> u(n,1);
    int ind =0;
    for (int k=0; k<2*n; ++k)
    {
      if (done[k])
        continue;
      u[ind] = roots[k];
      done[k] = 1;

      int mini = -1;
      double mind = 1e10;
      for (int l =k+1; l<2*n; ++l)
      {
        double dist = abs(roots[l]+u[ind]);
        if (dist<mind)
        {
          mind = dist;
          mini = l;
        }
      }
      done[mini] = 1;
      ind ++;
    }
    for (int k=0; k<n; ++k)
    {
      pv[k](i,0) = real(u[k]);
      pv[k](i,1) = imag(u[k]);
    }
  }

}
开发者ID:daniel-perry,项目名称:libigl,代码行数:56,代码来源:n_polyvector.cpp

示例2: fu

IGL_INLINE void igl::PolyVectorFieldFinder<DerivedV, DerivedF>::
minQuadWithKnownMini(const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &Q,
                          const Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > &f,
                     const Eigen::VectorXi isConstrained,
                          const Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &xknown,
                          Eigen::Matrix<std::complex<typename DerivedV::Scalar>, Eigen::Dynamic, 1> &x)
{
  int N = Q.rows();

  int nc = xknown.rows();
  Eigen::VectorXi known; known.setZero(nc,1);
  Eigen::VectorXi unknown; unknown.setZero(N-nc,1);

  int indk = 0, indu = 0;
  for (int i = 0; i<N; ++i)
    if (isConstrained[i])
    {
      known[indk] = i;
      indk++;
    }
    else
    {
      unknown[indu] = i;
      indu++;
    }

  Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>> Quu, Quk;

  igl::slice(Q,unknown, unknown, Quu);
  igl::slice(Q,unknown, known, Quk);


  std::vector<typename Eigen::Triplet<std::complex<typename DerivedV::Scalar> > > tripletList;

  Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > fu(N-nc,1);

  igl::slice(f,unknown, Eigen::VectorXi::Zero(1,1), fu);

  Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar> > rhs = (Quk*xknown).sparseView()+.5*fu;

  Eigen::SparseLU< Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>>> solver;
  solver.compute(-Quu);
  if(solver.info()!=Eigen::Success)
  {
    std::cerr<<"Decomposition failed!"<<std::endl;
    return;
  }
  Eigen::SparseMatrix<std::complex<typename DerivedV::Scalar>>  b  = solver.solve(rhs);
  if(solver.info()!=Eigen::Success)
  {
    std::cerr<<"Solving failed!"<<std::endl;
    return;
  }

  indk = 0, indu = 0;
  x.setZero(N,1);
  for (int i = 0; i<N; ++i)
    if (isConstrained[i])
      x[i] = xknown[indk++];
    else
      x[i] = b.coeff(indu++,0);

}
开发者ID:daniel-perry,项目名称:libigl,代码行数:63,代码来源:n_polyvector.cpp

示例3: if

void
pcl::Permutohedral::init (const std::vector<float> &feature, const int feature_dimension, const int N)
{
  N_ = N;
  d_ = feature_dimension;
  
  // Create hash table
  std::vector<std::vector<short> > keys;
  keys.reserve ((d_+1) * N_);
  std::multimap<size_t, int> hash_table;

  // reserve class memory
  if (offset_.size () > 0) 
    offset_.clear ();
  offset_.resize ((d_ + 1) * N_);

  if (barycentric_.size () > 0) 
    barycentric_.clear ();
  barycentric_.resize ((d_ + 1) * N_);

  // create vectors and matrices
  Eigen::VectorXf scale_factor = Eigen::VectorXf::Zero (d_);
  Eigen::VectorXf elevated = Eigen::VectorXf::Zero (d_ + 1);
  Eigen::VectorXf rem0 = Eigen::VectorXf::Zero (d_+1);
  Eigen::VectorXf barycentric = Eigen::VectorXf::Zero (d_+2);
  Eigen::VectorXi rank = Eigen::VectorXi::Zero (d_+1);
  Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic> canonical;
  canonical = Eigen::Matrix<int, Eigen::Dynamic, Eigen::Dynamic>::Zero (d_+1, d_+1);
  //short * key = new short[d_+1];
  std::vector<short> key (d_+1);

  // Compute the canonical simple
  for (int i = 0; i <= d_; i++)
  {
    for (int j = 0; j <= (d_ - i); j++)
      canonical (j, i) = i;
    for (int j = (d_ - i + 1); j <= d_; j++)
      canonical (j, i) = i - (d_ + 1);
  }

  // Expected standard deviation of our filter (p.6 in [Adams etal 2010])
  float inv_std_dev = std::sqrt (2.0f / 3.0f) * static_cast<float> (d_ + 1);
  
  // Compute the diagonal part of E (p.5 in [Adams etal 2010])
  for (int i = 0; i < d_; i++)
    scale_factor (i) = 1.0f / std::sqrt (static_cast<float> (i + 2) * static_cast<float> (i + 1)) * inv_std_dev;

  // Compute the simplex each feature lies in
  for (int k = 0; k < N_; k++)
    //for (int k = 0; k < 5; k++)
  {

    // Elevate the feature  (y = Ep, see p.5 in [Adams etal 2010])
    int index = k * feature_dimension;
    // sm contains the sum of 1..n of our faeture vector
    float sm = 0;
    for (int j = d_; j > 0; j--)
    {
      float cf = feature[index + j-1] * scale_factor (j-1);      
      elevated (j) = sm - static_cast<float> (j) * cf;
      sm += cf;
    }
    elevated (0) = sm;

    // Find the closest 0-colored simplex through rounding
    float down_factor = 1.0f / static_cast<float>(d_+1);
    float up_factor = static_cast<float>(d_+1);
    int sum = 0;
    for (int j = 0; j <= d_; j++){
      float rd = floorf (0.5f + (down_factor * elevated (j))) ;
      rem0 (j) = rd * up_factor;
      sum += static_cast<int> (rd);
    }
    
    // rank differential to find the permutation between this simplex and the canonical one.         
    // (See pg. 3-4 in paper.)    
    rank.setZero ();
    Eigen::VectorXf tmp = elevated - rem0;
    for (int i = 0; i < d_; i++){
      for (int j = i+1; j <= d_; j++)
        if (tmp (i) < tmp (j))
          rank (i)++;
        else
          rank (j)++;
    }

    // If the point doesn't lie on the plane (sum != 0) bring it back
    for (int j = 0; j <= d_; j++){
      rank (j) += sum;
      if (rank (j) < 0){
        rank (j) += d_+1;
        rem0 (j) += static_cast<float> (d_ + 1);
      }
      else if (rank (j) > d_){
        rank (j) -= d_+1;
        rem0 (j) -= static_cast<float> (d_ + 1);
      }
    }

    // Compute the barycentric coordinates (p.10 in [Adams etal 2010])
//.........这里部分代码省略.........
开发者ID:VictorLamoine,项目名称:pcl,代码行数:101,代码来源:permutohedral.cpp

示例4: parallel_transport_angles

IGL_INLINE void igl::parallel_transport_angles(
const Eigen::PlainObjectBase<DerivedV>& V,
const Eigen::PlainObjectBase<DerivedF>& F,
const Eigen::PlainObjectBase<DerivedV>& FN,
const Eigen::MatrixXi &E2F,
const Eigen::MatrixXi &F2E,
Eigen::PlainObjectBase<DerivedK> &K)
{
  int numE = E2F.rows();

  Eigen::VectorXi isBorderEdge;
  isBorderEdge.setZero(numE,1);
  for(unsigned i=0; i<numE; ++i)
  {
    if ((E2F(i,0) == -1) || ((E2F(i,1) == -1)))
      isBorderEdge[i] = 1;
  }

  K.setZero(numE);
  // For every non-border edge
  for (unsigned eid=0; eid<numE; ++eid)
  {
    if (!isBorderEdge[eid])
    {
      int fid0 = E2F(eid,0);
      int fid1 = E2F(eid,1);

      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N0 = FN.row(fid0);
//      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> N1 = FN.row(fid1);

      // find common edge on triangle 0 and 1
      int fid0_vc = -1;
      int fid1_vc = -1;
      for (unsigned i=0;i<3;++i)
      {
        if (F2E(fid0,i) == eid)
          fid0_vc = i;
        if (F2E(fid1,i) == eid)
          fid1_vc = i;
      }
      assert(fid0_vc != -1);
      assert(fid1_vc != -1);

      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> common_edge = V.row(F(fid0,(fid0_vc+1)%3)) - V.row(F(fid0,fid0_vc));
      common_edge.normalize();

      // Map the two triangles in a new space where the common edge is the x axis and the N0 the z axis
      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> P;
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> o = V.row(F(fid0,fid0_vc));
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> tmp = -N0.cross(common_edge);
      P << common_edge, tmp, N0;
      //      P.transposeInPlace();


      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V0;
      V0.row(0) = V.row(F(fid0,0)) -o;
      V0.row(1) = V.row(F(fid0,1)) -o;
      V0.row(2) = V.row(F(fid0,2)) -o;

      V0 = (P*V0.transpose()).transpose();

      //      assert(V0(0,2) < 1e-10);
      //      assert(V0(1,2) < 1e-10);
      //      assert(V0(2,2) < 1e-10);

      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> V1;
      V1.row(0) = V.row(F(fid1,0)) -o;
      V1.row(1) = V.row(F(fid1,1)) -o;
      V1.row(2) = V.row(F(fid1,2)) -o;
      V1 = (P*V1.transpose()).transpose();

      //      assert(V1(fid1_vc,2) < 10e-10);
      //      assert(V1((fid1_vc+1)%3,2) < 10e-10);

      // compute rotation R such that R * N1 = N0
      // i.e. map both triangles to the same plane
      double alpha = -atan2(V1((fid1_vc+2)%3,2),V1((fid1_vc+2)%3,1));

      Eigen::Matrix<typename DerivedV::Scalar, 3, 3> R;
      R << 1,          0,            0,
      0, cos(alpha), -sin(alpha) ,
      0, sin(alpha),  cos(alpha);
      V1 = (R*V1.transpose()).transpose();

      //      assert(V1(0,2) < 1e-10);
      //      assert(V1(1,2) < 1e-10);
      //      assert(V1(2,2) < 1e-10);

      // measure the angle between the reference frames
      // k_ij is the angle between the triangle on the left and the one on the right
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref0 = V0.row(1) - V0.row(0);
      Eigen::Matrix<typename DerivedV::Scalar, 1, 3> ref1 = V1.row(1) - V1.row(0);

      ref0.normalize();
      ref1.normalize();

      double ktemp = atan2(ref1(1),ref1(0)) - atan2(ref0(1),ref0(0));

      // just to be sure, rotate ref0 using angle ktemp...
      Eigen::Matrix<typename DerivedV::Scalar,2,2> R2;
//.........这里部分代码省略.........
开发者ID:Codermay,项目名称:libigl,代码行数:101,代码来源:parallel_transport_angles.cpp

示例5: marching_tets


//.........这里部分代码省略.........
    NV.row(i) = V.row(i);
  }
  for (int i = 0; i < new_verts.size(); ++i) {
    NV.row(i + V.rows()) = new_verts[i];
  }
  // Set I
  I.resize(NV.rows());
  for (int i = 0; i < I.rows(); ++i) {
    if (i < V.rows()) {
      I(i) = i;
    } else {
      I(i) = -1;
    }
  }
  Eigen::VectorXi facesMarkers;
  facesMarkers.resize(faces.size());
  // Copy faces
  NF.resize(faces.size(), 3);
  for (int i = 0; i < faces.size(); ++i) {
    NF.row(i) = faces[i];
    facesMarkers(i) = faces_markers[i];
  }
  
  Eigen::MatrixXd newV;
  Eigen::MatrixXi newF;
  Eigen::VectorXi SVJ, SVI, I2;
  // Helpers::viewTriMesh(NV, NF, facesMarkers);
  //igl::writeOFF("offset_mesh.off", NV, NF)
  Helpers::writeMeshWithMarkers("offset_mesh", NV, NF, facesMarkers);

  /*
  igl::collapse_small_triangles(NV, NF, 1e-8, newF);
  printf("Collapsed %d small triangles\n", NF.rows() - newF.rows());
  NF = newF;
  */

  ///*
  igl::remove_duplicate_vertices(NV, NF, 1e-20, newV, SVI, SVJ, newF);
  I2.resize(newV.rows());
  I2.setConstant(-1);
  for (int i = 0; i < NV.rows(); ++i) {
    if (I2(SVJ(i)) == -1) {
      I2(SVJ(i)) = I(i);
    } else {
      I2(SVJ(i)) = std::min(I2(SVJ(i)), I(i));
    }
  }
  NF = newF;
  NV = newV;
  I = I2;

  // Now see if we have duplicated faces.
  //igl::resolve_duplicated_faces(NF, newF, SVJ);
  //NF = newF;
  //*/

  // Other option is to do these two:
  // These are bad because sometimes the "small" triangles are not area zero,
  // and doing the removeDuplicates will delete these triangles and make the
  // mesh non-manifold. Better to wait for remeshing later.
  //Helpers::removeDuplicates(NV, NF, I);
  //Helpers::collapseSmallTriangles(NV, NF);

  igl::remove_unreferenced(NV, NF, newV, newF, SVI, SVJ);
  I2.resize(newV.rows());
  I2.setConstant(-1);
  for (int i = 0; i < I2.rows(); ++i) {
    I2(i) = I(SVJ(i));
  }
  I = I2;
  NV = newV;
  NF = newF;


  // orient everything correctly.
  Eigen::VectorXi C;
  igl::orientable_patches(NF, C);
  igl::bfs_orient(NF, newF, C);
  NF = newF;
  igl::orient_outward(NV, NF, C, newF, SVJ);
  NF = newF;
  //igl::writeOFF("offset_mesh_normals.off", NV, NF);

#ifdef DEBUG_MESH
  if (!Helpers::isMeshOkay(NV, NF)) {
    printf("Error: Mesh is not okay at first...\n");
  }
  if (!Helpers::isManifold(NV, NF, I)) {
    printf("Error: Mesh from marching tets not manifold!\n");
    Eigen::VectorXi temp;
    temp.resize(I.rows());
    temp.setZero();
    Helpers::isManifold(NV, NF, temp, true);
    Helpers::viewTriMesh(NV, NF, temp);
    Helpers::writeMeshWithMarkers("marching_tets_manifold", NV, NF, temp);
    cout << "See marching_tets_manifold.off for problems.\n";
    exit(1);
  }
#endif
}
开发者ID:evouga,项目名称:tiling,代码行数:101,代码来源:marching_tets.cpp


注:本文中的eigen::VectorXi::setZero方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。