本文整理汇总了C++中eigen::SelfAdjointEigenSolver类的典型用法代码示例。如果您正苦于以下问题:C++ SelfAdjointEigenSolver类的具体用法?C++ SelfAdjointEigenSolver怎么用?C++ SelfAdjointEigenSolver使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了SelfAdjointEigenSolver类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: updateCovarianceDrawList
void DrawableTransformCovariance::updateCovarianceDrawList() {
GLParameterTransformCovariance *covarianceParameter = dynamic_cast<GLParameterTransformCovariance*>(_parameter);
glNewList(_covarianceDrawList, GL_COMPILE);
if(_covariance != Eigen::Matrix3f::Zero() &&
covarianceParameter &&
covarianceParameter->show() &&
covarianceParameter->scale() > 0.0f) {
float scale = covarianceParameter->scale();
Eigen::Vector4f color = covarianceParameter->color();
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigenSolver;
eigenSolver.computeDirect(_covariance, Eigen::ComputeEigenvectors);
Eigen::Vector3f lambda = eigenSolver.eigenvalues();
Eigen::Isometry3f I = Eigen::Isometry3f::Identity();
I.linear() = eigenSolver.eigenvectors();
I.translation() = Eigen::Vector3f(_mean.x(), _mean.y(), _mean.z());
float sx = sqrt(lambda[0]) * scale;
float sy = sqrt(lambda[1]) * scale;
float sz = sqrt(lambda[2]) * scale;
glPushMatrix();
glMultMatrixf(I.data());
glColor4f(color[0], color[1], color[2], color[3]);
glScalef(sx, sy, sz);
glCallList(_sphereDrawList);
glPopMatrix();
}
glEndList();
}
示例2: updateCovarianceDrawList
void DrawableUncertainty::updateCovarianceDrawList() {
GLParameterUncertainty *uncertaintyParameter = dynamic_cast<GLParameterUncertainty*>(_parameter);
glNewList(_covarianceDrawList, GL_COMPILE);
if(_covarianceDrawList &&
_covariances &&
uncertaintyParameter &&
uncertaintyParameter->ellipsoidScale() > 0.0f) {
uncertaintyParameter->applyGLParameter();
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigenSolver;
float ellipsoidScale = uncertaintyParameter->ellipsoidScale();
for(size_t i = 0; i < _covariances->size(); i += uncertaintyParameter->step()) {
Gaussian3f &gaussian3f = _covariances->at(i);
Eigen::Matrix3f covariance = gaussian3f.covarianceMatrix();
Eigen::Vector3f mean = gaussian3f.mean();
eigenSolver.computeDirect(covariance, Eigen::ComputeEigenvectors);
Eigen::Vector3f eigenValues = eigenSolver.eigenvalues();
Eigen::Isometry3f I = Eigen::Isometry3f::Identity();
I.linear() = eigenSolver.eigenvectors();
I.translation() = mean;
float sx = sqrt(eigenValues[0]) * ellipsoidScale;
float sy = sqrt(eigenValues[1]) * ellipsoidScale;
float sz = sqrt(eigenValues[2]) * ellipsoidScale;
glPushMatrix();
glMultMatrixf(I.data());
sx = sx;
sy = sy;
sz = sz;
glScalef(sx, sy, sz);
glCallList(_sphereDrawList);
glPopMatrix();
}
}
glEndList();
}
示例3: sortedList
void Foam::mosDMDEigenBase::realSymmEigenSolver(const Eigen::MatrixXd& M, Eigen::DiagonalMatrix<scalar, Eigen::Dynamic>& S, Eigen::MatrixXd& U)
{
// Solve eigenvalues and eigenvectors
Eigen::SelfAdjointEigenSolver<Eigen::MatrixXd> eigenSolver;
eigenSolver.compute(M);
// Sort eigenvalues and corresponding eigenvectors
// in descending order
SortableList<scalar> sortedList(M.rows());
forAll (sortedList, i)
{
sortedList[i] = eigenSolver.eigenvalues()[i];
}
// Do sort
sortedList.sort();
label n = 0;
forAllReverse(sortedList, i)
{
S.diagonal()[n] = sortedList[i];
U.col(n) = eigenSolver.eigenvectors().col(sortedList.indices()[i]);
n++;
}
示例4: max
double
RotationAverage::chordal(Sophus::SO3d *avg)
{
double max_angle=0;
Eigen::Matrix4d Q;
Q.setZero();
auto rest = rotations.begin();
rest++;
for(auto && t: zip_range(weights, rotations))
{
double w=t.get<0>();
Sophus::SO3d& q = t.get<1>();
Q += w * q.unit_quaternion().coeffs() * q.unit_quaternion().coeffs().transpose();
max_angle = std::accumulate(rest, rotations.end(), max_angle,
[&q](double max, const Sophus::SO3d& other)
{
return std::max(max,
q.unit_quaternion().angularDistance(other.unit_quaternion()));
});
}
Eigen::SelfAdjointEigenSolver<Eigen::Matrix4d> solver;
solver.compute(Q);
Eigen::Vector4d::Map(avg->data()) = solver.eigenvectors().col(3);
return max_angle;
}
示例5: Q
void
NurbsTools::pca (const vector_vec2d &data, Eigen::Vector2d &mean, Eigen::Matrix2d &eigenvectors,
Eigen::Vector2d &eigenvalues)
{
if (data.empty ())
{
printf ("[NurbsTools::pca] Error, data is empty\n");
abort ();
}
mean = computeMean (data);
unsigned s = unsigned (data.size ());
Eigen::MatrixXd Q (2, s);
for (unsigned i = 0; i < s; i++)
Q.col (i) << (data[i] - mean);
Eigen::Matrix2d C = Q * Q.transpose ();
Eigen::SelfAdjointEigenSolver<Eigen::Matrix2d> eigensolver (C);
if (eigensolver.info () != Success)
{
printf ("[NurbsTools::pca] Can not find eigenvalues.\n");
abort ();
}
for (int i = 0; i < 2; ++i)
{
eigenvalues (i) = eigensolver.eigenvalues () (1 - i);
eigenvectors.col (i) = eigensolver.eigenvectors ().col (1 - i);
}
}
示例6: calcNormalsEigen
inline void calcNormalsEigen(Mat &depth_img, Mat &points, Mat &normals, int k=11, float max_dist=0.02, bool dist_rel_z=true) {
if (normals.rows != depth_img.rows || normals.cols != depth_img.cols || normals.channels() != 3) {
normals = cv::Mat::zeros(depth_img.rows, depth_img.cols, CV_32FC3);
}
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver;
const float bad_point = std::numeric_limits<float>::quiet_NaN ();
for (int y = 0; y < depth_img.rows; ++y) {
for (int x = 0; x < depth_img.cols; ++x) {
Eigen::Vector3f p_q = points.at<Eigen::Vector3f>(y,x);
// depth-nan handle: bad point
if (depth_img.at<float>(y, x) == 0 || p_q(0) != p_q(0)){
normals.at<Eigen::Vector3f>(y,x) = Eigen::Vector3f(bad_point, bad_point, bad_point);
continue;
}
Eigen::Matrix3f A = Eigen::Matrix3f::Zero();
std::vector<Eigen::Vector3f> p_j_list;
Eigen::Vector3f _p = Eigen::Vector3f::Zero();
float max_dist_rel = max_dist * ((dist_rel_z)? p_q[2]*1.5 : 1);
for (int k_y = y-k/2; k_y <= y+k/2; ++k_y) {
for (int k_x = x-k/2; k_x <= x+k/2; ++k_x) {
if(k_y<0 || k_x<0 || k_y>=depth_img.rows || k_x >= depth_img.cols)
continue;
if (k_y == y && k_x == x)
continue;
if (depth_img.at<float>(k_y, k_x) == 0)
continue;
Eigen::Vector3f p_j = points.at<Eigen::Vector3f>(k_y,k_x);
if( max_dist_rel <= 0 || ((p_q - p_j).norm() <= max_dist_rel) ) {
p_j_list.push_back(p_j);
_p += p_j;
}
}
}
_p /= p_j_list.size();
double weight_sum = 0;
for (int i = 0; i < p_j_list.size(); ++i) {
double w = 1.0/(p_j_list[i] - _p).squaredNorm();
A += w*((p_j_list[i] - _p)*((p_j_list[i] - _p).transpose()));
weight_sum += w;
}
A /= weight_sum;
solver.computeDirect(A);
Eigen::Vector3f normal = solver.eigenvectors().col(0).normalized();
// flip to viewpoint (0,0,0)
if(normal(2) > 0)
normal *= -1;
normals.at<Eigen::Vector3f>(y,x) = normal;
}
}
}
示例7: drawEllipsoid
/// Draw ellipsoid
void QGLVisualizer::drawEllipsoid(const Vec3& pos, const Mat33& covariance) const{
Eigen::SelfAdjointEigenSolver<Mat33> es;
es.compute(covariance);
Mat33 V(es.eigenvectors());
double GLmat[16]={V(0,0), V(1,0), V(2,0), 0, V(0,1), V(1,1), V(2,1), 0, V(0,2), V(1,2), V(2,2), 0, pos.x(), pos.y(), pos.z(), 1};
glPushMatrix();
glMultMatrixd(GLmat);
drawEllipsoid(10,10,sqrt(es.eigenvalues()(0))*config.ellipsoidScale, sqrt(es.eigenvalues()(1))*config.ellipsoidScale, sqrt(es.eigenvalues()(2))*config.ellipsoidScale);
glPopMatrix();
}
示例8: Q
void
NurbsTools::pca (const vector_vec3d &data, ON_3dVector &mean, Eigen::Matrix3d &eigenvectors,
Eigen::Vector3d &eigenvalues)
{
if (data.empty ())
{
printf ("[NurbsTools::pca] Error, data is empty\n");
abort ();
}
mean = computeMean (data);
unsigned s = data.size ();
ON_Matrix Q(3, s);
for (unsigned i = 0; i < s; i++) {
Q[0][i] = data[i].x - mean.x;
Q[1][i] = data[i].y - mean.y;
Q[2][i] = data[i].z - mean.z;
}
ON_Matrix Qt = Q;
Qt.Transpose();
ON_Matrix oC;
oC.Multiply(Q,Qt);
Eigen::Matrix3d C(3,3);
for (unsigned i = 0; i < 3; i++) {
for (unsigned j = 0; j < 3; j++) {
C(i,j) = oC[i][j];
}
}
Eigen::SelfAdjointEigenSolver < Eigen::Matrix3d > eigensolver (C);
if (eigensolver.info () != Eigen::Success)
{
printf ("[NurbsTools::pca] Can not find eigenvalues.\n");
abort ();
}
for (int i = 0; i < 3; ++i)
{
eigenvalues (i) = eigensolver.eigenvalues () (2 - i);
if (i == 2)
eigenvectors.col (2) = eigenvectors.col (0).cross (eigenvectors.col (1));
else
eigenvectors.col (i) = eigensolver.eigenvectors ().col (2 - i);
}
}
示例9: out
OBB::OBB(Mesh::const_iterator begin, Mesh::const_iterator end)
{
if (begin == end)
{
axes = -ZERO_SIZE * Matrix3f::Identity(); //make it inside out (i guess)
origin = Vector3f::Zero();
return;
}
Vector3f centerOfMass = centroid(begin, end);
Matrix3f inertiaTensor = Matrix3f::Zero();
auto addPt = [&](const Vector3f& pt, float mass)
{
Vector3f lpos = pt - centerOfMass;
inertiaTensor(0, 0) += (lpos.y()*lpos.y() + lpos.z()*lpos.z()) * mass;
inertiaTensor(1, 1) += (lpos.x()*lpos.x() + lpos.z()*lpos.z()) * mass;
inertiaTensor(2, 2) += (lpos.x()*lpos.x() + lpos.y()*lpos.y()) * mass;
inertiaTensor(1, 0) -= lpos.x()*lpos.y() * mass;
inertiaTensor(2, 0) -= lpos.x()*lpos.z() * mass;
inertiaTensor(2, 1) -= lpos.y()*lpos.z() * mass;
};
for (const auto& tri : make_range(begin, end))
{
float area = TriNormal(tri).norm() / 6.f;
addPt(tri.col(0), area);
addPt(tri.col(1), area);
addPt(tri.col(2), area);
}
Eigen::SelfAdjointEigenSolver<Matrix3f> es;
es.computeDirect(inertiaTensor);
axes = es.eigenvectors();
float maxflt = std::numeric_limits<float>::max();
Eigen::Vector3f min{ maxflt, maxflt, maxflt };
Eigen::Vector3f max = -min;
for (const auto& tri : make_range(begin, end))
{
min = min.cwiseMin((axes.transpose() * tri).rowwise().minCoeff());
max = max.cwiseMax((axes.transpose() * tri).rowwise().maxCoeff());
}
extent = (max - min).cwiseMax(ZERO_SIZE) / 2.f;
origin = axes * (min + extent);
}
示例10:
void computeEigenReferenceSolution
(
size_t nr_problems,
const Vcl::Core::InterleavedArray<float, 3, 3, -1>& ATA,
Vcl::Core::InterleavedArray<float, 3, 3, -1>& U,
Vcl::Core::InterleavedArray<float, 3, 1, -1>& S
)
{
// Compute reference using Eigen
for (int i = 0; i < static_cast<int>(nr_problems); i++)
{
Vcl::Matrix3f A = ATA.at<float>(i);
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> solver;
solver.compute(A, Eigen::ComputeEigenvectors);
U.at<float>(i) = solver.eigenvectors();
S.at<float>(i) = solver.eigenvalues();
}
}
示例11: qfinal
void
drawBoundingBox(PointCloudT::Ptr cloud,
boost::shared_ptr<pcl::visualization::PCLVisualizer> viewer,
int z)
{
//Eigen::Vector4f centroid;
pcl::compute3DCentroid(*cloud, centroid);
//Eigen::Matrix3f covariance;
computeCovarianceMatrixNormalized(*cloud, centroid, covariance);
//Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> eigen_solver(covariance,
//Eigen::ComputeEigenvectors);
eigen_solver.compute(covariance,Eigen::ComputeEigenvectors);
// eigen_solver = boost::shared_ptr<Eigen::SelfAdjointEigenSolver>
// (covariance,Eigen::ComputeEigenvectors);
eigDx = eigen_solver.eigenvectors();
eigDx.col(2) = eigDx.col(0).cross(eigDx.col(1));
//Eigen::Matrix4f p2w(Eigen::Matrix4f::Identity());
p2w.block<3,3>(0,0) = eigDx.transpose();
p2w.block<3,1>(0,3) = -1.f * (p2w.block<3,3>(0,0) * centroid.head<3>());
//pcl::PointCloud<PointT> cPoints;
pcl::transformPointCloud(*cloud, cPoints, p2w);
//PointT min_pt, max_pt;
pcl::getMinMax3D(cPoints, min_pt, max_pt);
const Eigen::Vector3f mean_diag = 0.5f*(max_pt.getVector3fMap() + min_pt.getVector3fMap());
const Eigen::Quaternionf qfinal(eigDx);
const Eigen::Vector3f tfinal = eigDx*mean_diag + centroid.head<3>();
//viewer->addPointCloud(cloud);
viewer->addCube(tfinal, qfinal, max_pt.x - min_pt.x, max_pt.y - min_pt.y, max_pt.z - min_pt.z,boost::lexical_cast<std::string>((z+1)*200));
}
示例12: sqrt
std::list< LieGroup > confidence_region_contours(const NormalDistributionOn<LieGroup>& N, int dim, typename LieGroup::Scalar confidence) {
using namespace std;
list< typename LieGroup::Tangent > sphere = sample_sphere< typename LieGroup::Scalar, LieGroup::DoF >(50, dim);
boost::math::chi_squared_distribution<typename LieGroup::Scalar> chi2( LieGroup::DoF );
double scale = sqrt( boost::math::quantile(chi2, confidence) ) ;
Eigen::SelfAdjointEigenSolver< typename NormalDistributionOn< LieGroup >::Covariance > eigs;
eigs.compute(N.covariance());
typename NormalDistributionOn<SE2d>::Covariance sqrt_cov = eigs.eigenvectors() * eigs.eigenvalues().array().sqrt().matrix().asDiagonal();
std::list< LieGroup > out;
for( typename list< typename LieGroup::Tangent >::iterator it = sphere.begin(); it != sphere.end(); it++ ) {
out.push_back( N.mean() * LieGroup::exp( scale* sqrt_cov * (*it) ) );
}
return out;
}
开发者ID:maxpfingsthorn,项目名称:SophusDistributions,代码行数:22,代码来源:NormalDistributionConfidenceOperations.hpp
示例13: return
template<typename PointT> bool
pcl::PCA<PointT>::initCompute ()
{
if(!Base::initCompute ())
{
PCL_THROW_EXCEPTION (InitFailedException, "[pcl::PCA::initCompute] failed");
return (false);
}
if(indices_->size () < 3)
{
PCL_THROW_EXCEPTION (InitFailedException, "[pcl::PCA::initCompute] number of points < 3");
return (false);
}
// Compute mean
mean_ = Eigen::Vector4f::Zero ();
compute3DCentroid (*input_, *indices_, mean_);
// Compute demeanished cloud
Eigen::MatrixXf cloud_demean;
demeanPointCloud (*input_, *indices_, mean_, cloud_demean);
assert (cloud_demean.cols () == int (indices_->size ()));
// Compute the product cloud_demean * cloud_demean^T
Eigen::Matrix3f alpha = static_cast<Eigen::Matrix3f> (cloud_demean.topRows<3> () * cloud_demean.topRows<3> ().transpose ());
// Compute eigen vectors and values
Eigen::SelfAdjointEigenSolver<Eigen::Matrix3f> evd (alpha);
// Organize eigenvectors and eigenvalues in ascendent order
for (int i = 0; i < 3; ++i)
{
eigenvalues_[i] = evd.eigenvalues () [2-i];
eigenvectors_.col (i) = evd.eigenvectors ().col (2-i);
}
// If not basis only then compute the coefficients
if (!basis_only_)
coefficients_ = eigenvectors_.transpose() * cloud_demean.topRows<3> ();
compute_done_ = true;
return (true);
}
示例14: polar_dec
IGL_INLINE void igl::polar_dec(
const Eigen::PlainObjectBase<DerivedA> & A,
Eigen::PlainObjectBase<DerivedR> & R,
Eigen::PlainObjectBase<DerivedT> & T,
Eigen::PlainObjectBase<DerivedU> & U,
Eigen::PlainObjectBase<DerivedS> & S,
Eigen::PlainObjectBase<DerivedV> & V)
{
using namespace std;
using namespace Eigen;
typedef typename DerivedA::Scalar Scalar;
const Scalar th = std::sqrt(Eigen::NumTraits<Scalar>::dummy_precision());
Eigen::SelfAdjointEigenSolver<DerivedA> eig;
feclearexcept(FE_UNDERFLOW);
eig.computeDirect(A.transpose()*A);
if(fetestexcept(FE_UNDERFLOW) || eig.eigenvalues()(0)/eig.eigenvalues()(2)<th)
{
cout<<"resorting to svd 1..."<<endl;
return polar_svd(A,R,T,U,S,V);
}
S = eig.eigenvalues().cwiseSqrt();
V = eig.eigenvectors();
U = A * V;
R = U * S.asDiagonal().inverse() * V.transpose();
T = V * S.asDiagonal() * V.transpose();
S = S.reverse().eval();
V = V.rowwise().reverse().eval();
U = U.rowwise().reverse().eval() * S.asDiagonal().inverse();
if(R.determinant() < 0)
{
// Annoyingly the .eval() is necessary
auto W = V.eval();
const auto & SVT = S.asDiagonal() * V.adjoint();
W.col(V.cols()-1) *= -1.;
R = U*W.transpose();
T = W*SVT;
}
if(std::fabs(R.squaredNorm()-3.) > th)
{
cout<<"resorting to svd 2..."<<endl;
return polar_svd(A,R,T,U,S,V);
}
}
示例15: diagonalizeInertiaTensor
static void diagonalizeInertiaTensor( const Matrix3s& I, Matrix3s& R0, Vector3s& I0 )
{
// Inertia tensor should by symmetric
assert( ( I - I.transpose() ).lpNorm<Eigen::Infinity>() <= 1.0e-6 );
// Inertia tensor should have positive determinant
assert( I.determinant() > 0.0 );
// Compute the eigenvectors and eigenvalues of the input matrix
const Eigen::SelfAdjointEigenSolver<Matrix3s> es{ I };
// Check for errors
if( es.info() == Eigen::NumericalIssue )
{
std::cerr << "Warning, failed to compute eigenvalues of inertia tensor due to Eigen::NumericalIssue" << std::endl;
}
else if( es.info() == Eigen::NoConvergence )
{
std::cerr << "Warning, failed to compute eigenvalues of inertia tensor due to Eigen::NoConvergence" << std::endl;
}
else if( es.info() == Eigen::InvalidInput )
{
std::cerr << "Warning, failed to compute eigenvalues of inertia tensor due to Eigen::InvalidInput" << std::endl;
}
assert( es.info() == Eigen::Success );
// Save the eigenvectors and eigenvalues
I0 = es.eigenvalues();
assert( ( I0.array() > 0.0 ).all() );
assert( I0.x() <= I0.y() );
assert( I0.y() <= I0.z() );
R0 = es.eigenvectors();
assert( fabs( fabs( R0.determinant() ) - 1.0 ) <= 1.0e-6 );
// Ensure that we have an orientation preserving transform
if( R0.determinant() < 0.0 )
{
R0.col( 0 ) *= -1.0;
}
}