本文整理汇总了C++中eigen::Array类的典型用法代码示例。如果您正苦于以下问题:C++ Array类的具体用法?C++ Array怎么用?C++ Array使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了Array类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: extractInternalFaces
void extractInternalFaces(const Dune::CpGrid& grid,
Eigen::Array<int, Eigen::Dynamic, 1>& internal_faces,
Eigen::Array<int, Eigen::Dynamic, 2, Eigen::RowMajor>& nbi)
{
// Extracts the internal faces of the grid.
// These are stored in internal_faces.
int nf=numFaces(grid);
int num_internal=0;
for(int f=0; f<nf; ++f)
{
if(grid.faceCell(f, 0)<0 || grid.faceCell(f, 1)<0)
continue;
++num_internal;
}
// std::cout << num_internal << " internal faces." << std::endl;
nbi.resize(num_internal, 2);
internal_faces.resize(num_internal);
int fi = 0;
for (int f = 0; f < nf; ++f) {
if(grid.faceCell(f, 0)>=0 && grid.faceCell(f, 1)>=0) {
internal_faces[fi] = f;
nbi(fi,0) = grid.faceCell(f, 0);
nbi(fi,1) = grid.faceCell(f, 1);
++fi;
}
}
}
示例2: CPCs
void
factor_U(const Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>& U,
Eigen::Array<T, Eigen::Dynamic, 1>& CPCs) {
size_t K = U.rows();
size_t position = 0;
size_t pull = K - 1;
if (K == 2) {
CPCs(0) = atanh(U(0, 1));
return;
}
Eigen::Array<T, 1, Eigen::Dynamic> temp = U.row(0).tail(pull);
CPCs.head(pull) = temp;
Eigen::Array<T, Eigen::Dynamic, 1> acc(K);
acc(0) = -0.0;
acc.tail(pull) = 1.0 - temp.square();
for (size_t i = 1; i < (K - 1); i++) {
position += pull;
pull--;
temp = U.row(i).tail(pull);
temp /= sqrt(acc.tail(pull) / acc(i));
CPCs.segment(position, pull) = temp;
acc.tail(pull) *= 1.0 - temp.square();
}
CPCs = 0.5 * ( (1.0 + CPCs) / (1.0 - CPCs) ).log(); // now unbounded
}
示例3: on
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
read_corr_L(const Eigen::Array<T, Eigen::Dynamic, 1>& CPCs, // on (-1, 1)
size_t K) {
Eigen::Array<T, Eigen::Dynamic, 1> temp;
Eigen::Array<T, Eigen::Dynamic, 1> acc(K-1);
acc.setOnes();
// Cholesky factor of correlation matrix
Eigen::Array<T, Eigen::Dynamic, Eigen::Dynamic> L(K, K);
L.setZero();
size_t position = 0;
size_t pull = K - 1;
L(0, 0) = 1.0;
L.col(0).tail(pull) = temp = CPCs.head(pull);
acc.tail(pull) = T(1.0) - temp.square();
for (size_t i = 1; i < (K - 1); i++) {
position += pull;
pull--;
temp = CPCs.segment(position, pull);
L(i, i) = sqrt(acc(i-1));
L.col(i).tail(pull) = temp * acc.tail(pull).sqrt();
acc.tail(pull) *= T(1.0) - temp.square();
}
L(K-1, K-1) = sqrt(acc(K-2));
return L.matrix();
}
示例4: saveAsBitmap
void saveAsBitmap(const Eigen::VectorXd& x, int n, const char* filename)
{
Eigen::Array<unsigned char,Eigen::Dynamic,Eigen::Dynamic> bits = (x*255).cast<unsigned char>();
QImage img(bits.data(), n,n,QImage::Format_Indexed8);
img.setColorCount(256);
for(int i=0;i<256;i++) img.setColor(i,qRgb(i,i,i));
img.save(filename);
}
示例5: lp
typename boost::math::tools::promote_args<T_y,T_loc,T_scale,T_shape>::type
lkj_cov_log(const Eigen::Matrix<T_y,Eigen::Dynamic,Eigen::Dynamic>& y,
const Eigen::Matrix<T_loc,Eigen::Dynamic,1>& mu,
const Eigen::Matrix<T_scale,Eigen::Dynamic,1>& sigma,
const T_shape& eta,
const Policy&) {
static const char* function = "stan::prob::lkj_cov_log(%1%)";
using stan::math::check_size_match;
using stan::math::check_finite;
using stan::math::check_positive;
using boost::math::tools::promote_args;
typename promote_args<T_y,T_loc,T_scale,T_shape>::type lp(0.0);
if (!check_size_match(function,
mu.rows(), "Rows of location parameter",
sigma.rows(), "columns of scale parameter",
&lp, Policy()))
return lp;
if (!check_size_match(function,
y.rows(), "Rows of random variable",
y.cols(), "columns of random variable",
&lp, Policy()))
return lp;
if (!check_size_match(function,
y.rows(), "Rows of random variable",
mu.rows(), "rows of location parameter",
&lp, Policy()))
return lp;
if (!check_positive(function, eta, "Shape parameter", &lp, Policy()))
return lp;
if (!check_finite(function, mu, "Location parameter", &lp, Policy()))
return lp;
if (!check_finite(function, sigma, "Scale parameter", &lp, Policy()))
return lp;
// FIXME: build vectorized versions
for (int m = 0; m < y.rows(); ++m)
for (int n = 0; n < y.cols(); ++n)
if (!check_finite(function, y(m,n), "Covariance matrix", &lp, Policy()))
return lp;
const unsigned int K = y.rows();
const Eigen::Array<T_y,Eigen::Dynamic,1> sds
= y.diagonal().array().sqrt();
for (unsigned int k = 0; k < K; k++) {
lp += lognormal_log<propto>(sds(k), mu(k), sigma(k), Policy());
}
if (stan::is_constant<typename stan::scalar_type<T_shape> >::value
&& eta == 1.0) {
// no need to rescale y into a correlation matrix
lp += lkj_corr_log<propto,T_y,T_shape,Policy>(y, eta, Policy());
return lp;
}
Eigen::DiagonalMatrix<T_y,Eigen::Dynamic> D(K);
D.diagonal() = sds.inverse();
lp += lkj_corr_log<propto,T_y,T_shape,Policy>(D * y * D, eta, Policy());
return lp;
}
示例6:
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
read_cov_L(const Eigen::Array<T, Eigen::Dynamic, 1>& CPCs,
const Eigen::Array<T, Eigen::Dynamic, 1>& sds,
T& log_prob) {
size_t K = sds.rows();
// adjust due to transformation from correlations to covariances
log_prob += (sds.log().sum() + LOG_2) * K;
return sds.matrix().asDiagonal() * read_corr_L(CPCs, K, log_prob);
}
示例7: convert_symmetric_fermion_mixings_to_slha
void SLHA_io::convert_symmetric_fermion_mixings_to_slha(Eigen::Array<double, N, 1>& m,
Eigen::Matrix<std::complex<double>, N, N>& z)
{
for (int i = 0; i < N; i++) {
// check if i'th row contains non-zero imaginary parts
if (!is_zero(z.row(i).imag().cwiseAbs().maxCoeff())) {
z.row(i) *= std::complex<double>(0.0,1.0);
m(i) *= -1;
}
}
}
示例8: Exception
Eigen::MatrixXd eddy2scheme (const Eigen::MatrixXd& config, const Eigen::Array<int, Eigen::Dynamic, 1>& indices)
{
if (config.cols() != 4)
throw Exception ("Expected 4 columns in EDDY-format phase-encoding config file");
Eigen::MatrixXd result (indices.size(), 4);
for (ssize_t row = 0; row != indices.size(); ++row) {
if (indices[row] > config.rows())
throw Exception ("Malformed EDDY-style phase-encoding information: Index exceeds number of config entries");
result.row(row) = config.row(indices[row]-1);
}
return result;
}
示例9: ears
IGL_INLINE void igl::ears(
const Eigen::MatrixBase<DerivedF> & F,
Eigen::PlainObjectBase<Derivedear> & ear,
Eigen::PlainObjectBase<Derivedear_opp> & ear_opp)
{
assert(F.cols() == 3 && "F should contain triangles");
Eigen::Array<bool,Eigen::Dynamic,3> B;
{
Eigen::Array<bool,Eigen::Dynamic,1> I;
on_boundary(F,I,B);
}
find(B.rowwise().count() == 2,ear);
Eigen::Array<bool,Eigen::Dynamic,3> Bear;
slice(B,ear,1,Bear);
Eigen::Array<bool,Eigen::Dynamic,1> M;
mat_min(Bear,2,M,ear_opp);
}
示例10: convert_symmetric_fermion_mixings_to_hk
void SLHA_io::convert_symmetric_fermion_mixings_to_hk(Eigen::Array<double, N, 1>& m,
Eigen::Matrix<std::complex<double>, N, N>& z)
{
for (int i = 0; i < N; i++) {
if (m(i) < 0.) {
z.row(i) *= std::complex<double>(0.0,1.0);
m(i) *= -1;
}
}
}
示例11: calculateAverageUpdateTime
void Streamer::calculateAverageUpdateTime()
{
static boost::chrono::steady_clock::time_point currentTime, lastRecordedTime;
static Eigen::Array<float, 5, 1> recordedTimes = Eigen::Array<float, 5, 1>::Zero();
currentTime = boost::chrono::steady_clock::now();
if (lastRecordedTime.time_since_epoch().count())
{
if (!(recordedTimes > 0).all())
{
boost::chrono::duration<float> elapsedTime = currentTime - lastRecordedTime;
recordedTimes[(recordedTimes > 0).count()] = elapsedTime.count();
}
else
{
averageUpdateTime = recordedTimes.mean() * 50.0f;
recordedTimes.setZero();
}
}
lastRecordedTime = currentTime;
}
示例12:
int FeatureTransformationEstimator::consensus3D(Eigen::MatrixXd P, Eigen::MatrixXd Q, Eigen::Isometry3d T, double thresh, Eigen::Array<bool, 1, Eigen::Dynamic> &consensusSet)
{
int consensus = 0;
P = T * P.colwise().homogeneous();
Eigen::MatrixXd norms = (P - Q).colwise().norm();
consensusSet = norms.array() < thresh;
consensus = consensusSet.count();
return consensus;
}
示例13: readVector
void LQCDA::readVector(AsciiReader& reader, Eigen::Array<double, Eigen::Dynamic, 1>& output)
{
try {
int i;
reader.read(i);
output.resize(i);
for(int _i=0; _i<i; ++_i)
reader.read(output(_i));
}
catch (const IOException& e) {
}
}
示例14: gradient
// project points outside of domain back to boundary
void distmesh::utils::projectPointsToBoundary(
Functional const& distanceFunction, double const initialPointDistance,
Eigen::Ref<Eigen::ArrayXXd> points) {
Eigen::ArrayXd distance = distanceFunction(points);
// check for points outside of boundary
Eigen::Array<bool, Eigen::Dynamic, 1> outside = distance > 0.0;
if (outside.any()) {
// calculate gradient
Eigen::ArrayXXd gradient(points.rows(), points.cols());
Eigen::ArrayXXd deltaX = Eigen::ArrayXXd::Zero(points.rows(), points.cols());
for (int dim = 0; dim < points.cols(); ++dim) {
deltaX.col(dim).fill(constants::deltaX * initialPointDistance);
gradient.col(dim) = (distanceFunction(points + deltaX) - distance) /
(constants::deltaX * initialPointDistance);
deltaX.col(dim).fill(0.0);
}
// project points back to boundary
points -= outside.replicate(1, points.cols()).select(
gradient.colwise() * distance / gradient.square().rowwise().sum(), 0.0);
}
}
示例15: read_corr_L
Eigen::Matrix<T, Eigen::Dynamic, Eigen::Dynamic>
read_corr_L(const Eigen::Array<T, Eigen::Dynamic, 1>& CPCs,
size_t K,
T& log_prob) {
Eigen::Matrix<T, Eigen::Dynamic, 1> values(CPCs.rows() - 1);
size_t pos = 0;
// no need to abs() because this Jacobian determinant
// is strictly positive (and triangular)
// see inverse of Jacobian in equation 11 of LKJ paper
for (size_t k = 1; k <= (K - 2); k++)
for (size_t i = k + 1; i <= K; i++) {
values(pos) = (K - k - 1) * log1m(square(CPCs(pos)));
pos++;
}
log_prob += 0.5 * sum(values);
return read_corr_L(CPCs, K);
}