本文整理汇总了C++中cppad::vector类的典型用法代码示例。如果您正苦于以下问题:C++ vector类的具体用法?C++ vector怎么用?C++ vector使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了vector类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: put_check_for_nan
void put_check_for_nan(const CppAD::vector<Base>& vec, std::string& file_name)
{
size_t char_size = sizeof(Base) * vec.size();
const char* char_ptr = reinterpret_cast<const char*>( vec.data() );
# if CPPAD_HAS_MKSTEMP
char pattern[] = "/tmp/fileXXXXXX";
int fd = mkstemp(pattern);
file_name = pattern;
write(fd, char_ptr, char_size);
close(fd);
# else
# if CPPAD_HAS_TMPNAM_S
std::vector<char> name(L_tmpnam_s);
if( tmpnam_s( name.data(), L_tmpnam_s ) != 0 )
{ CPPAD_ASSERT_KNOWN(
false,
"Cannot create a temporary file name"
);
}
file_name = name.data();
# else
file_name = tmpnam( CPPAD_NULL );
# endif
std::fstream file_out(file_name.c_str(), std::ios::out|std::ios::binary );
file_out.write(char_ptr, char_size);
file_out.close();
# endif
return;
}
示例2: ode_z
void ode_z(
const Float &t ,
const CppAD::vector<Float> &z ,
CppAD::vector<Float> &h )
{ // z = [ y ; y_x ]
// z_t = h(t, x, z) = [ y_t , y_x_t ]
size_t i, j;
size_t n = x_.size();
CPPAD_ASSERT_UNKNOWN( z.size() == n + n * n );
// y_t
for(i = 0; i < n; i++)
{ h[i] = x_[i] * z[i];
// initialize y_x_t as zero
for(j = 0; j < n; j++)
h[n + i * n + j] = 0.;
}
for(i = 0; i < n; i++)
{ // partial of g_i w.r.t y_i
Float gi_yi = x_[i];
// partial of g_i w.r.t x_i
Float gi_xi = z[i];
// partial of y_i w.r.t x_i
Float yi_xi = z[n + i * n + i];
// derivative of yi_xi with respect to t
h[n + i * n + i] = gi_xi + gi_yi * yi_xi;
}
}
示例3: ode_evaluate
void ode_evaluate(
CppAD::vector<Float> &x ,
size_t m ,
CppAD::vector<Float> &fm )
{
typedef CppAD::vector<Float> Vector;
size_t n = x.size();
size_t ell;
CPPAD_ASSERT_KNOWN( m == 0 || m == 1,
"ode_evaluate: m is not zero or one"
);
CPPAD_ASSERT_KNOWN(
((m==0) & (fm.size()==n)) || ((m==1) & (fm.size()==n*n)),
"ode_evaluate: the size of fm is not correct"
);
if( m == 0 )
ell = n;
else ell = n + n * n;
// set up the case we are integrating
Float ti = 0.;
Float tf = 1.;
Float smin = 1e-5;
Float smax = 1.;
Float scur = 1.;
Float erel = 0.;
vector<Float> yi(ell), eabs(ell);
size_t i, j;
for(i = 0; i < ell; i++)
{ eabs[i] = 1e-10;
if( i < n )
yi[i] = 1.;
else yi[i] = 0.;
}
// return values
Vector yf(ell), ef(ell), maxabs(ell);
size_t nstep;
// construct ode method for taking one step
ode_evaluate_method<Float> method(m, x);
// solve differential equation
yf = OdeErrControl(method,
ti, tf, yi, smin, smax, scur, eabs, erel, ef, maxabs, nstep);
if( m == 0 )
{ for(i = 0; i < n; i++)
fm[i] = yf[i];
}
else
{ for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
fm[i * n + j] = yf[n + i * n + j];
}
return;
}
示例4: cppad_colpack_symmetric
// The following routine is not yet used or tested.
void cppad_colpack_symmetric(
CppAD::vector<size_t>& color ,
size_t n ,
const CppAD::vector<unsigned int*>& adolc_pattern )
{ size_t i, k;
CPPAD_ASSERT_UNKNOWN( adolc_pattern.size() == n );
// Use adolc sparsity pattern to create corresponding bipartite graph
ColPack::GraphColoringInterface graph(
SRC_MEM_ADOLC,
adolc_pattern.data(),
n
);
// Color the graph with the speciied ordering
// graph.Coloring("SMALLEST_LAST", "STAR") is slower in adolc testing
graph.Coloring("SMALLEST_LAST", "ACYCLIC_FOR_INDIRECT_RECOVERY");
// Use coloring information to create seed matrix
int n_seed_row;
int n_seed_col;
double** seed_matrix = graph.GetSeedMatrix(&n_seed_row, &n_seed_col);
CPPAD_ASSERT_UNKNOWN( size_t(n_seed_col) == n );
// now return coloring in format required by CppAD
for(i = 0; i < n; i++)
color[i] = n;
for(k = 0; k < size_t(n_seed_row); k++)
{ for(i = 0; i < n; i++)
{ if( seed_matrix[k][i] != 0.0 )
{ CPPAD_ASSERT_UNKNOWN( color[i] == n );
color[i] = k;
}
}
}
# ifndef NDEBUG
for(i = 0; i < n; i++)
CPPAD_ASSERT_UNKNOWN(color[i] < n || adolc_pattern[i][0] == 0);
// The coloring above will probably fail this test.
// Check that no rows with the same color have overlapping entries:
CppAD::vector<bool> found(n);
for(k = 0; k < size_t(n_seed_row); k++)
{ size_t j, ell;
for(j = 0; j < n; j++)
found[j] = false;
for(i = 0; i < n; i++) if( color[i] == k )
{ for(ell = 0; ell < adolc_pattern[i][0]; ell++)
{ j = adolc_pattern[i][1 + ell];
CPPAD_ASSERT_UNKNOWN( ! found[j] );
found[j] = true;
}
}
}
# endif
return;
}
示例5: resize
/*! Change number of sets, set end, and initialize all sets as empty
Any memory currently allocated for this object is freed. If
\a n_set is zero, no new memory is allocated for the set.
Otherwise, new memory may be allocated for the sets.
\param n_set
is the number of sets in this vector of sets.
\param end
is the maximum element plus one (the minimum element is 0).
*/
void resize(size_t n_set, size_t end)
{ n_set_ = n_set;
end_ = end;
// free all memory connected with data_
data_.resize(0);
// now start a new vector with empty sets
data_.resize(n_set_);
// value that signfies past end of list
next_index_ = n_set;
}
示例6: get_check_for_nan
void get_check_for_nan(CppAD::vector<Base>& vec, const std::string& file_name)
{ //
size_t n = vec.size();
size_t char_size = sizeof(Base) * n;
char* char_ptr = reinterpret_cast<char*>( vec.data() );
//
std::fstream file_in(file_name.c_str(), std::ios::in|std::ios::binary );
file_in.read(char_ptr, char_size);
//
return;
}
示例7: hes
VectorBase ADFun<Base>::SparseHessian(
const VectorBase& x, const VectorBase& w, const VectorSet& p
)
{ size_t i, j, k;
size_t n = Domain();
VectorBase hes(n * n);
CPPAD_ASSERT_KNOWN(
size_t(x.size()) == n,
"SparseHessian: size of x not equal domain size for f."
);
typedef typename VectorSet::value_type Set_type;
typedef typename internal_sparsity<Set_type>::pattern_type Pattern_type;
// initialize the return value as zero
Base zero(0);
for(i = 0; i < n; i++)
for(j = 0; j < n; j++)
hes[i * n + j] = zero;
// arguments to SparseHessianCompute
Pattern_type s;
CppAD::vector<size_t> row;
CppAD::vector<size_t> col;
sparse_hessian_work work;
bool transpose = false;
sparsity_user2internal(s, p, n, n, transpose);
k = 0;
for(i = 0; i < n; i++)
{ s.begin(i);
j = s.next_element();
while( j != s.end() )
{ row.push_back(i);
col.push_back(j);
k++;
j = s.next_element();
}
}
size_t K = k;
VectorBase H(K);
// now we have folded this into the following case
SparseHessianCompute(x, w, s, row, col, H, work);
// now set the non-zero return values
for(k = 0; k < K; k++)
hes[ row[k] * n + col[k] ] = H[k];
return hes;
}
示例8: resize
/*! Change number of sets, set end, and initialize all sets as empty
If \c n_set_in is zero, any memory currently allocated for this object
is freed. Otherwise, new memory may be allocated for the sets (if needed).
\param n_set_in
is the number of sets in this vector of sets.
\param end_in
is the maximum element plus one (the minimum element is 0).
*/
void resize(size_t n_set_in, size_t end_in)
{ n_set_ = n_set_in;
end_ = end_in;
if( n_set_ == 0 )
{ // free all memory connected with data_
data_.clear();
return;
}
// now start a new vector with empty sets
data_.resize(n_set_);
// value that signfies past end of list
next_index_ = n_set_;
}
示例9: link_ode
bool link_ode(
size_t size ,
size_t repeat ,
CppAD::vector<double> &x ,
CppAD::vector<double> &jacobian
)
{ // -------------------------------------------------------------
// setup
size_t n = size;
assert( x.size() == n );
size_t m = 0;
CppAD::vector<double> f(n);
while(repeat--)
{ // choose next x value
uniform_01(n, x);
// evaluate function
CppAD::ode_evaluate(x, m, f);
}
size_t i;
for(i = 0; i < n; i++)
jacobian[i] = f[i];
return true;
}
示例10: ode_y
void ode_y(
const Float &t,
const CppAD::vector<Float> &y,
CppAD::vector<Float> &g)
{ // y_t = g(t, x, y)
CPPAD_ASSERT_UNKNOWN( y.size() == x_.size() );
size_t i;
size_t n = x_.size();
for(i = 0; i < n; i++)
g[i] = x_[i] * y[i];
// because y_i(0) = 1, solution for this equation is
// y_0 (t) = t
// y_1 (t) = exp(x_1 * t)
// y_2 (t) = exp(2 * x_2 * t)
// ...
}
示例11: Ode
// Given that y_i (0) = x_i,
// the following y_i (t) satisfy the ODE below:
// y_0 (t) = x[0]
// y_1 (t) = x[1] + x[0] * t
// y_2 (t) = x[2] + x[1] * t + x[0] * t^2/2
// y_3 (t) = x[3] + x[2] * t + x[1] * t^2/2 + x[0] * t^3 / 3!
// ...
void Ode(
const Float& t,
const CppAD::vector<Float>& y,
CppAD::vector<Float>& f)
{ size_t n = y.size();
f[0] = 0.;
for(size_t k = 1; k < n; k++)
f[k] = y[k-1];
}
示例12: sparse_hes_fun
void sparse_hes_fun(
size_t n ,
const FloatVector& x ,
const CppAD::vector<size_t>& row ,
const CppAD::vector<size_t>& col ,
size_t p ,
FloatVector& fp )
{
// check numeric type specifications
CheckNumericType<Float>();
// check value of p
CPPAD_ASSERT_KNOWN(
p < 3,
"sparse_hes_fun: p > 2"
);
size_t i, j, k;
size_t size = 1;
for(k = 0; k < p; k++)
size *= n;
for(k = 0; k < size; k++)
fp[k] = Float(0);
size_t K = row.size();
Float t;
Float dt_i;
Float dt_j;
for(k = 0; k < K; k++)
{ i = row[k];
j = col[k];
t = exp( x[i] * x[j] );
dt_i = t * x[j];
dt_j = t * x[i];
switch(p)
{
case 0:
fp[0] += t;
break;
case 1:
fp[i] += dt_i;
fp[j] += dt_j;
break;
case 2:
fp[i * n + i] += dt_i * x[j];
fp[i * n + j] += t + dt_j * x[j];
//
fp[j * n + i] += t + dt_i * x[i];
fp[j * n + j] += dt_j * x[i];
break;
}
}
}
示例13: link_sparse_hessian
bool link_sparse_hessian(
size_t repeat ,
CppAD::vector<double> &x ,
CppAD::vector<size_t> &i ,
CppAD::vector<size_t> &j ,
CppAD::vector<double> &hessian )
{
// -----------------------------------------------------
// setup
using CppAD::vector;
size_t order = 0; // derivative order corresponding to function
size_t n = x.size(); // argument space dimension
size_t ell = i.size(); // size of index vectors
vector<double> y(1); // function value
// temporaries
size_t k;
vector<double> tmp(2 * ell);
// choose a value for x
CppAD::uniform_01(n, x);
// ------------------------------------------------------
while(repeat--)
{
// get the next set of indices
CppAD::uniform_01(2 * ell, tmp);
for(k = 0; k < ell; k++)
{ i[k] = size_t( n * tmp[k] );
i[k] = std::min(n-1, i[k]);
//
j[k] = size_t( n * tmp[k + ell] );
j[k] = std::min(n-1, j[k]);
}
// computation of the function
CppAD::sparse_evaluate(x, i, j, order, y);
}
hessian[0] = y[0];
return true;
}
示例14: evalLoopModelJacobianHessian
/**
* Evaluates the Jacobian and the Hessian of the loop model
*
* @param individualColoring whether or not there are atomic
* functions in the model
*/
inline void evalLoopModelJacobianHessian(bool individualColoring) {
using namespace CppAD::extra;
using CppAD::vector;
ADFun<CG<Base> >& fun = model->getTape();
const std::vector<IterEquationGroup<Base> >& eqGroups = model->getEquationsGroups();
vector<vector<CG<Base> > > vw(1);
vw[0].resize(w.size());
vector<CG<Base> > y;
size_t nEqGroups = equationGroups.size();
vector<std::set<size_t> > empty;
vector<std::map<size_t, CG<Base> > > emptyJac;
for (size_t g = 0; g < nEqGroups; g++) {
const IterEquationGroup<Base>& group = eqGroups[g];
vector<std::map<size_t, std::map<size_t, CG<Base> > > > vhess;
for (size_t i = 0; i < w.size(); i++) {
vw[0][i] = Base(0);
}
for (size_t itI : group.tapeI) {
vw[0][itI] = w[itI];
}
generateLoopForJacHes(fun, x, vw, y,
model->getJacobianSparsity(),
g == 0 ? evalJacSparsity : empty,
g == 0 ? dyiDzk : emptyJac,
model->getHessianSparsity(),
equationGroups[g].evalHessSparsity,
vhess,
individualColoring);
//Hessian
equationGroups[g].hess = vhess[0];
}
}
示例15: zeroOrderDependency
virtual void zeroOrderDependency(const CppAD::vector<bool>& vx,
CppAD::vector<bool>& vy) override {
using CppAD::vector;
size_t m = vy.size();
size_t n = vx.size();
vector<std::set<size_t> > rt(m);
for (size_t j = 0; j < m; j++) {
rt[j].insert(j);
}
vector<std::set<size_t> > st(n);
rev_sparse_jac(m, rt, st);
for (size_t j = 0; j < n; j++) {
for (size_t i : st[j]) {
if (vx[j]) {
vy[i] = true;
}
}
}
}