本文整理汇总了C++中core::vector3df::crossProduct方法的典型用法代码示例。如果您正苦于以下问题:C++ vector3df::crossProduct方法的具体用法?C++ vector3df::crossProduct怎么用?C++ vector3df::crossProduct使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类core::vector3df
的用法示例。
在下文中一共展示了vector3df::crossProduct方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: calculateTangents
// Copied from irrlicht
void calculateTangents(
core::vector3df& normal,
core::vector3df& tangent,
core::vector3df& binormal,
const core::vector3df& vt1, const core::vector3df& vt2, const core::vector3df& vt3, // vertices
const core::vector2df& tc1, const core::vector2df& tc2, const core::vector2df& tc3) // texture coords
{
core::vector3df v1 = vt1 - vt2;
core::vector3df v2 = vt3 - vt1;
normal = v2.crossProduct(v1);
normal.normalize();
// binormal
f32 deltaX1 = tc1.X - tc2.X;
f32 deltaX2 = tc3.X - tc1.X;
binormal = (v1 * deltaX2) - (v2 * deltaX1);
binormal.normalize();
// tangent
f32 deltaY1 = tc1.Y - tc2.Y;
f32 deltaY2 = tc3.Y - tc1.Y;
tangent = (v1 * deltaY2) - (v2 * deltaY1);
tangent.normalize();
// adjust
core::vector3df txb = tangent.crossProduct(binormal);
if (txb.dotProduct(normal) < 0.0f)
{
tangent *= -1.0f;
binormal *= -1.0f;
}
}
示例2: Update
void CFreeCamera::Update(unsigned uDeltaTime)
{
scene::ICameraSceneNode *pCamera = m_pSceneNode;
// Check if dt is not 0 and we are animating active camera
if(!uDeltaTime || pCamera->getSceneManager()->getActiveCamera() != pCamera)
return;
// Calculate some useful vectors
core::vector3df vPos = pCamera->getPosition();
const core::vector3df vForward = (pCamera->getTarget() - pCamera->getPosition()).normalize();
const core::vector3df &vUp = pCamera->getUpVector();
const core::vector3df vRight = vForward.crossProduct(vUp);
float fSpeed = uDeltaTime / 100.0f;
// Shift makes camera faster
if(m_Controls[CTRL_FASTER])
fSpeed *= 5.0f;
// Calculate direction of movement
core::vector3df vMovement(0.0f, 0.0f, 0.0f);
if(m_Controls[CTRL_FORWARD])
vMovement += vForward * fSpeed;
if(m_Controls[CTRL_BACKWARD])
vMovement -= vForward * fSpeed;
if(m_Controls[CTRL_LEFT])
vMovement += vRight * fSpeed;
if(m_Controls[CTRL_RIGHT])
vMovement -= vRight * fSpeed;
// update camera velocity
float fFactor = min(uDeltaTime / 200.0f, 1.0f);
m_vVelocity = vMovement * fFactor + m_vVelocity * (1.0f - fFactor);
vPos += m_vVelocity;
pCamera->setPosition(vPos);
// Update pitch and yaw
if(m_vCursorPos != m_vCursorCenter)
{
core::vector2df vOffset = m_vCursorPos - m_vCursorCenter;
m_fYaw = fmod(m_fYaw + vOffset.X, 2.0f * M_PI);
const float fPitchMax = M_PI_2 - 0.1f;
m_fPitch -= vOffset.Y;
if(m_fPitch > fPitchMax)
m_fPitch = fPitchMax;
else if(m_fPitch < -fPitchMax)
m_fPitch = -fPitchMax;
m_pCursorCtrl->setPosition(0.5f, 0.5f);
m_vCursorCenter = m_pCursorCtrl->getRelativePosition();
}
// Set camera target
core::vector3df vTarget(sinf(m_fYaw) * cosf(m_fPitch), sinf(m_fPitch), cosf(m_fYaw) * cosf(m_fPitch));
vTarget += vPos;
pCamera->setTarget(vTarget);
}
示例3: RotatePositionByDirectionalVector
core::vector3df RotatePositionByDirectionalVector(core::vector3df vPos, core::vector3df vNormal )
{
//OPTIMIZE Isn't there a much faster way to do this?
//calculate rotated z
core::vector3df vFinal = vNormal * vPos.Z;
//calculate rotation x
vFinal = vFinal + (vNormal.crossProduct(core::vector3df(0,1,0)) * vPos.X);
//y will just be up.. yeah, not really right
vFinal.Y += vPos.Y;
return vFinal;
}
示例4: Battin
/*------------------------------------------------------------------------------
|
| PROCEDURE LAMBERBATTIN
|
| This PROCEDURE solves Lambert's problem using Battins method. The method is
| developed in Battin (1987).
|
| Author : David Vallado 303-344-6037 1 Mar 2001
|
| Inputs Description Range / Units
| Ro - IJK Position vector 1 ER
| R - IJK Position vector 2 ER
| DM - direction of motion 'L','S'
| DtTU - Time between R1 and R2 TU
|
| OutPuts :
| Vo - IJK Velocity vector ER / TU
| V - IJK Velocity vector ER / TU
| Error - Error flag 'ok',...
|
| Locals :
| i - Index
| Loops -
| u -
| b -
| Sinv -
| Cosv -
| rp -
| x -
| xn -
| y -
| l -
| m -
| CosDeltaNu -
| SinDeltaNu -
| DNu -
| a -
| Tan2w -
| RoR -
| h1 -
| h2 -
| Tempx -
| eps -
| denom -
| chord -
| k2 -
| s -
| f -
| g -
| fDot -
| am -
| ae -
| be -
| tm -
| gDot -
| arg1 -
| arg2 -
| tc -
| AlpE -
| BetE -
| AlpH -
| BetH -
| DE -
| DH -
|
| Coupling :
| ARCSIN - Arc sine FUNCTION
| ARCCOS - Arc cosine FUNCTION
| MAG - Magnitude of a vector
| ARCSINH - Inverse hyperbolic sine
| ARCCOSH - Inverse hyperbolic cosine
| SINH - Hyperbolic sine
| POWER - Raise a base to a POWER
| ATAN2 - Arc tangent FUNCTION that resolves quadrants
|
| References :
| Vallado 2001, 464-467, Ex 7-5
|
-----------------------------------------------------------------------------*/
void LambertBattin
(
core::vector3df Ro, core::vector3df R, char dm, char OverRev, f64 DtTU,
core::vector3df* Vo, core::vector3df* V, char* Error
)
{
const f64 Small = 0.000001;
core::vector3df RCrossR;
s32 i, Loops;
f64 u, b, Sinv,Cosv, rp, x, xn, y, L, m, CosDeltaNu, SinDeltaNu,DNu, a,
tan2w, RoR, h1, h2, Tempx, eps, Denom, chord, k2, s, f, g, FDot, am,
ae, be, tm, GDot, arg1, arg2, tc, AlpE, BetE, AlpH, BetH, DE, DH;
strcpy(Error, "ok");
CosDeltaNu = Ro.dotProduct(R) / (Ro.getLength() * R.getLength());
RCrossR = Ro.crossProduct(R);
SinDeltaNu = RCrossR.getLength() / (Ro.getLength() * R.getLength());
DNu = atan2(SinDeltaNu, CosDeltaNu);
RoR = R.getLength() / Ro.getLength();
//.........这里部分代码省略.........