本文整理汇总了C++中clipperlib::Polygon::size方法的典型用法代码示例。如果您正苦于以下问题:C++ Polygon::size方法的具体用法?C++ Polygon::size怎么用?C++ Polygon::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类clipperlib::Polygon
的用法示例。
在下文中一共展示了Polygon::size方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: optimizePolygon
void optimizePolygon(ClipperLib::Polygon& poly)
{
Point p0 = poly[poly.size()-1];
for(unsigned int i=0;i<poly.size();i++)
{
Point p1 = poly[i];
if (shorterThen(p0 - p1, 10))
{
poly.erase(poly.begin() + i);
i --;
}else{
Point p2;
if (i < poly.size() - 1)
p2 = poly[i+1];
else
p2 = poly[0];
Point diff0 = normal(p1 - p0, 1000000);
Point diff2 = normal(p1 - p2, 1000000);
int64_t d = dot(diff0, diff2);
if (d < -999999000000LL)
{
poly.erase(poly.begin() + i);
i --;
}else{
p0 = p1;
}
}
}
}
示例2: TPPLPoly_To_Polygon
TPPLPoly TPPLPoly_To_Polygon(const ClipperLib::Polygon& B)
{
TPPLPoly poly;
poly.Init(B.size());
for(unsigned int i=0; i < B.size() ; ++i)
{
poly[i].x = B[i].X;
poly[i].y = B[i].Y;
}
return poly;
}
示例3: addPolygon
void GCodePlanner::addPolygon(ClipperLib::Polygon& polygon, int startIdx, GCodePathConfig* config)
{
Point p0 = polygon[startIdx];
addTravel(p0);
for(unsigned int i=1; i<polygon.size(); i++)
{
Point p1 = polygon[(startIdx + i) % polygon.size()];
addExtrusionMove(p1, config);
p0 = p1;
}
if (polygon.size() > 2)
addExtrusionMove(polygon[startIdx], config);
}
示例4: TranslatePolygon
void TranslatePolygon(ClipperLib::Polygon &p, int dx, int dy)
{
for (size_t i = 0; i < p.size(); ++i)
{
p[i].X += dx;
p[i].Y += dy;
}
}
示例5: makePolygons
void SlicerLayer::makePolygons(OptimizedVolume* ov, bool keepNoneClosed, bool extensiveStitching)
{
for(unsigned int startSegment=0; startSegment < segmentList.size(); startSegment++)
{
if (segmentList[startSegment].addedToPolygon)
continue;
ClipperLib::Polygon poly;
poly.push_back(segmentList[startSegment].start);
unsigned int segmentIndex = startSegment;
bool canClose;
while(true)
{
canClose = false;
segmentList[segmentIndex].addedToPolygon = true;
Point p0 = segmentList[segmentIndex].end;
poly.push_back(p0);
int nextIndex = -1;
OptimizedFace* face = &ov->faces[segmentList[segmentIndex].faceIndex];
for(unsigned int i=0;i<3;i++)
{
if (face->touching[i] > -1 && faceToSegmentIndex.find(face->touching[i]) != faceToSegmentIndex.end())
{
Point p1 = segmentList[faceToSegmentIndex[face->touching[i]]].start;
Point diff = p0 - p1;
if (shorterThen(diff, 10))
{
if (faceToSegmentIndex[face->touching[i]] == (int)startSegment)
canClose = true;
if (segmentList[faceToSegmentIndex[face->touching[i]]].addedToPolygon)
continue;
nextIndex = faceToSegmentIndex[face->touching[i]];
}
}
}
if (nextIndex == -1)
break;
segmentIndex = nextIndex;
}
if (canClose)
polygonList.add(poly);
else
openPolygonList.add(poly);
}
//Clear the segmentList to save memory, it is no longer needed after this point.
segmentList.clear();
//Connecting polygons that are not closed yet, as models are not always perfect manifold we need to join some stuff up to get proper polygons
//First link up polygon ends that are within 2 microns.
for(unsigned int i=0;i<openPolygonList.size();i++)
{
if (openPolygonList[i].size() < 1) continue;
for(unsigned int j=0;j<openPolygonList.size();j++)
{
if (openPolygonList[j].size() < 1) continue;
Point diff = openPolygonList[i][openPolygonList[i].size()-1] - openPolygonList[j][0];
int64_t distSquared = vSize2(diff);
if (distSquared < 2 * 2)
{
if (i == j)
{
polygonList.add(openPolygonList[i]);
openPolygonList[i].clear();
break;
}else{
for(unsigned int n=0; n<openPolygonList[j].size(); n++)
openPolygonList[i].push_back(openPolygonList[j][n]);
openPolygonList[j].clear();
}
}
}
}
//Next link up all the missing ends, closing up the smallest gaps first. This is an inefficient implementation which can run in O(n*n*n) time.
while(1)
{
int64_t bestScore = 10000 * 10000;
unsigned int bestA = -1;
unsigned int bestB = -1;
bool reversed = false;
for(unsigned int i=0;i<openPolygonList.size();i++)
{
if (openPolygonList[i].size() < 1) continue;
for(unsigned int j=0;j<openPolygonList.size();j++)
{
if (openPolygonList[j].size() < 1) continue;
Point diff = openPolygonList[i][openPolygonList[i].size()-1] - openPolygonList[j][0];
int64_t distSquared = vSize2(diff);
if (distSquared < bestScore)
{
bestScore = distSquared;
bestA = i;
bestB = j;
reversed = false;
}
//.........这里部分代码省略.........
示例6: optimize
void PathOrderOptimizer::optimize()
{
std::vector<bool> picked;
for(unsigned int i=0;i<polygons.size(); i++)
{
int best = -1;
float bestDist = 0xFFFFFFFFFFFFFFFFLL;
ClipperLib::Polygon* poly = polygons[i];
for(unsigned int j=0; j<poly->size(); j++)
{
float dist = vSize2f((*poly)[j] - startPoint);
if (dist < bestDist)
{
best = j;
bestDist = dist;
}
}
polyStart.push_back(best);
picked.push_back(false);
}
Point p0 = startPoint;
for(unsigned int n=0; n<polygons.size(); n++)
{
int best = -1;
float bestDist = 0xFFFFFFFFFFFFFFFFLL;
for(unsigned int i=0;i<polygons.size(); i++)
{
if (picked[i] || (*polygons[i]).size() < 1)
continue;
if ((*polygons[i]).size() == 2)
{
float dist = vSize2f((*polygons[i])[0] - p0);
if (dist < bestDist)
{
best = i;
bestDist = dist;
polyStart[i] = 0;
}
dist = vSize2f((*polygons[i])[1] - p0);
if (dist < bestDist)
{
best = i;
bestDist = dist;
polyStart[i] = 1;
}
}else{
float dist = vSize2f((*polygons[i])[polyStart[i]] - p0);
if (dist < bestDist)
{
best = i;
bestDist = dist;
}
}
}
if (best > -1)
{
if (polygons[best]->size() == 2)
{
p0 = (*polygons[best])[(polyStart[best] + 1) % 2];
}else{
p0 = (*polygons[best])[polyStart[best]];
}
picked[best] = true;
polyOrder.push_back(best);
}
}
p0 = startPoint;
for(unsigned int n=0; n<polyOrder.size(); n++)
{
int nr = polyOrder[n];
int best = -1;
float bestDist = 0xFFFFFFFFFFFFFFFFLL;
for(unsigned int i=0;i<polygons[nr]->size(); i++)
{
float dist = vSize2f((*polygons[nr])[i] - p0);
if (dist < bestDist)
{
best = i;
bestDist = dist;
}
}
polyStart[nr] = best;
if ((*polygons[nr]).size() <= 2)
{
p0 = (*polygons[nr])[(best + 1) % 2];
}else{
p0 = (*polygons[nr])[best];
}
}
}