本文整理汇总了C++中cl::list::size方法的典型用法代码示例。如果您正苦于以下问题:C++ list::size方法的具体用法?C++ list::size怎么用?C++ list::size使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类cl::list
的用法示例。
在下文中一共展示了list::size方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getMembers
// getMembers - Copy over remaining items in RestOfArgs to our Members vector
// This is just for clarity.
void getMembers() {
if(RestOfArgs.size() > 0)
Members = std::vector<std::string>(RestOfArgs);
}
示例2: executeInput
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// FIXME: Preserve buffers until resolveRelocations time to work around a bug
// in RuntimeDyldELF.
// This fixme should be fixed ASAP. This is a very brittle workaround.
std::vector<std::unique_ptr<MemoryBuffer>> InputBuffers;
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for(unsigned i = 0, e = InputFileList.size(); i != e; ++i) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(InputFileList[i]);
if (std::error_code EC = InputBuffer.getError())
return Error("unable to read input: '" + EC.message() + "'");
ErrorOr<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (std::error_code EC = MaybeObj.getError())
return Error("unable to create object file: '" + EC.message() + "'");
ObjectFile &Obj = **MaybeObj;
InputBuffers.push_back(std::move(*InputBuffer));
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
return Error(Dyld.getErrorString());
}
}
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Clear instruction cache before code will be executed.
MemMgr.invalidateInstructionCache();
// FIXME: Error out if there are unresolved relocations.
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
if (!MainAddress)
return Error("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (unsigned i = 0, e = MemMgr.FunctionMemory.size(); i != e; ++i) {
sys::MemoryBlock &Data = MemMgr.FunctionMemory[i];
// Make sure the memory is executable.
std::string ErrorStr;
sys::Memory::InvalidateInstructionCache(Data.base(), Data.size());
if (!sys::Memory::setExecutable(Data, &ErrorStr))
return Error("unable to mark function executable: '" + ErrorStr + "'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
const char **Argv = new const char*[2];
// Use the name of the first input object module as argv[0] for the target.
Argv[0] = InputFileList[0].c_str();
Argv[1] = nullptr;
return Main(1, Argv);
}
示例3: main
int main(int argc, char **argv) {
// Print a stack trace if we signal out.
sys::PrintStackTraceOnErrorSignal();
PrettyStackTraceProgram X(argc, argv);
llvm_shutdown_obj Y; // Call llvm_shutdown() on exit.
// Initialize targets and assembly printers/parsers.
llvm::InitializeAllTargetInfos();
llvm::InitializeAllTargetMCs();
llvm::InitializeAllAsmParsers();
llvm::InitializeAllDisassemblers();
// Register the target printer for --version.
cl::AddExtraVersionPrinter(TargetRegistry::printRegisteredTargetsForVersion);
cl::ParseCommandLineOptions(argc, argv, "llvm machine code playground\n");
TripleName = Triple::normalize(TripleName);
setDwarfDebugFlags(argc, argv);
setDwarfDebugProducer();
const char *ProgName = argv[0];
const Target *TheTarget = GetTarget(ProgName);
if (!TheTarget)
return 1;
OwningPtr<MemoryBuffer> BufferPtr;
if (error_code ec = MemoryBuffer::getFileOrSTDIN(InputFilename, BufferPtr)) {
errs() << ProgName << ": " << ec.message() << '\n';
return 1;
}
MemoryBuffer *Buffer = BufferPtr.take();
SourceMgr SrcMgr;
// Tell SrcMgr about this buffer, which is what the parser will pick up.
SrcMgr.AddNewSourceBuffer(Buffer, SMLoc());
// Record the location of the include directories so that the lexer can find
// it later.
SrcMgr.setIncludeDirs(IncludeDirs);
llvm::OwningPtr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
assert(MRI && "Unable to create target register info!");
llvm::OwningPtr<MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TripleName));
assert(MAI && "Unable to create target asm info!");
// FIXME: This is not pretty. MCContext has a ptr to MCObjectFileInfo and
// MCObjectFileInfo needs a MCContext reference in order to initialize itself.
OwningPtr<MCObjectFileInfo> MOFI(new MCObjectFileInfo());
MCContext Ctx(MAI.get(), MRI.get(), MOFI.get(), &SrcMgr);
MOFI->InitMCObjectFileInfo(TripleName, RelocModel, CMModel, Ctx);
if (SaveTempLabels)
Ctx.setAllowTemporaryLabels(false);
Ctx.setGenDwarfForAssembly(GenDwarfForAssembly);
if (!DwarfDebugFlags.empty())
Ctx.setDwarfDebugFlags(StringRef(DwarfDebugFlags));
if (!DwarfDebugProducer.empty())
Ctx.setDwarfDebugProducer(StringRef(DwarfDebugProducer));
if (!DebugCompilationDir.empty())
Ctx.setCompilationDir(DebugCompilationDir);
if (!MainFileName.empty())
Ctx.setMainFileName(MainFileName);
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MAttrs.size()) {
SubtargetFeatures Features;
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
OwningPtr<tool_output_file> Out(GetOutputStream());
if (!Out)
return 1;
formatted_raw_ostream FOS(Out->os());
OwningPtr<MCStreamer> Str;
OwningPtr<MCInstrInfo> MCII(TheTarget->createMCInstrInfo());
OwningPtr<MCSubtargetInfo>
STI(TheTarget->createMCSubtargetInfo(TripleName, MCPU, FeaturesStr));
MCInstPrinter *IP = NULL;
if (FileType == OFT_AssemblyFile) {
IP =
TheTarget->createMCInstPrinter(OutputAsmVariant, *MAI, *MCII, *MRI, *STI);
MCCodeEmitter *CE = 0;
MCAsmBackend *MAB = 0;
if (ShowEncoding) {
CE = TheTarget->createMCCodeEmitter(*MCII, *MRI, *STI, Ctx);
MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, MCPU);
}
bool UseCFI = !DisableCFI;
Str.reset(TheTarget->createAsmStreamer(Ctx, FOS, /*asmverbose*/true,
/*useLoc*/ true,
//.........这里部分代码省略.........
示例4: getRelPos
// getRelPos - Extract the member filename from the command line for
// the [relpos] argument associated with a, b, and i modifiers
void getRelPos() {
if(RestOfArgs.size() == 0)
show_help("Expected [relpos] for a, b, or i modifier");
RelPos = RestOfArgs[0];
RestOfArgs.erase(RestOfArgs.begin());
}
示例5: getOptions
static void getOptions() {
if(RestOfArgs.size() == 0)
show_help("Expected options");
Options = RestOfArgs[0];
RestOfArgs.erase(RestOfArgs.begin());
}
示例6: wrap
LLVMExecutionEngineRef
mono_llvm_create_ee (LLVMModuleProviderRef MP, AllocCodeMemoryCb *alloc_cb, FunctionEmittedCb *emitted_cb, ExceptionTableCb *exception_cb)
{
std::string Error;
force_pass_linking ();
LLVMInitializeX86Target ();
LLVMInitializeX86TargetInfo ();
mono_mm = new MonoJITMemoryManager ();
mono_mm->alloc_cb = alloc_cb;
#if LLVM_MAJOR_VERSION == 2 && LLVM_MINOR_VERSION < 8
DwarfExceptionHandling = true;
#else
JITExceptionHandling = true;
#endif
// PrettyStackTrace installs signal handlers which trip up libgc
DisablePrettyStackTrace = true;
ExecutionEngine *EE = ExecutionEngine::createJIT (unwrap (MP), &Error, mono_mm, CodeGenOpt::Default);
if (!EE) {
errs () << "Unable to create LLVM ExecutionEngine: " << Error << "\n";
g_assert_not_reached ();
}
EE->InstallExceptionTableRegister (exception_cb);
mono_event_listener = new MonoJITEventListener (emitted_cb);
EE->RegisterJITEventListener (mono_event_listener);
fpm = new FunctionPassManager (unwrap (MP));
fpm->add(new TargetData(*EE->getTargetData()));
#if LLVM_CHECK_VERSION(2, 9)
PassRegistry &Registry = *PassRegistry::getPassRegistry();
initializeCore(Registry);
initializeScalarOpts(Registry);
//initializeIPO(Registry);
initializeAnalysis(Registry);
initializeIPA(Registry);
initializeTransformUtils(Registry);
initializeInstCombine(Registry);
//initializeInstrumentation(Registry);
initializeTarget(Registry);
#endif
llvm::cl::ParseEnvironmentOptions("mono", "MONO_LLVM", "", false);
if (PassList.size() > 0) {
/* Use the passes specified by the env variable */
/* Only the passes in force_pass_linking () can be used */
for (unsigned i = 0; i < PassList.size(); ++i) {
const PassInfo *PassInf = PassList[i];
Pass *P = 0;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
fpm->add (P);
}
} else {
/* Use the same passes used by 'opt' by default, without the ipo passes */
const char *opts = "-simplifycfg -domtree -domfrontier -scalarrepl -instcombine -simplifycfg -basiccg -domtree -domfrontier -scalarrepl -simplify-libcalls -instcombine -simplifycfg -instcombine -simplifycfg -reassociate -domtree -loops -loopsimplify -domfrontier -loopsimplify -lcssa -loop-rotate -licm -lcssa -loop-unswitch -instcombine -scalar-evolution -loopsimplify -lcssa -iv-users -indvars -loop-deletion -loopsimplify -lcssa -loop-unroll -instcombine -memdep -gvn -memdep -memcpyopt -sccp -instcombine -domtree -memdep -dse -adce -gvn -simplifycfg -preverify -domtree -verify";
char **args;
int i;
args = g_strsplit (opts, " ", 1000);
for (i = 0; args [i]; i++)
;
llvm::cl::ParseCommandLineOptions (i, args, "", false);
g_strfreev (args);
for (unsigned i = 0; i < PassList.size(); ++i) {
const PassInfo *PassInf = PassList[i];
Pass *P = 0;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
fpm->add (P);
}
/*
fpm->add(createInstructionCombiningPass());
fpm->add(createReassociatePass());
fpm->add(createGVNPass());
fpm->add(createCFGSimplificationPass());
*/
}
return wrap(EE);
}
示例7: printLineInfoForInput
static int printLineInfoForInput(bool LoadObjects, bool UseDebugObj) {
assert(LoadObjects || !UseDebugObj);
// Load any dylibs requested on the command line.
loadDylibs();
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
RuntimeDyld Dyld(MemMgr, MemMgr);
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
OwningBinary<ObjectFile> DebugObj;
std::unique_ptr<RuntimeDyld::LoadedObjectInfo> LoadedObjInfo = nullptr;
ObjectFile *SymbolObj = &Obj;
if (LoadObjects) {
// Load the object file
LoadedObjInfo =
Dyld.loadObject(Obj);
if (Dyld.hasError())
ErrorAndExit(Dyld.getErrorString());
// Resolve all the relocations we can.
Dyld.resolveRelocations();
if (UseDebugObj) {
DebugObj = LoadedObjInfo->getObjectForDebug(Obj);
SymbolObj = DebugObj.getBinary();
LoadedObjInfo.reset();
}
}
std::unique_ptr<DIContext> Context(
new DWARFContextInMemory(*SymbolObj,LoadedObjInfo.get()));
std::vector<std::pair<SymbolRef, uint64_t>> SymAddr =
object::computeSymbolSizes(*SymbolObj);
// Use symbol info to iterate functions in the object.
for (const auto &P : SymAddr) {
object::SymbolRef Sym = P.first;
Expected<SymbolRef::Type> TypeOrErr = Sym.getType();
if (!TypeOrErr) {
// TODO: Actually report errors helpfully.
consumeError(TypeOrErr.takeError());
continue;
}
SymbolRef::Type Type = *TypeOrErr;
if (Type == object::SymbolRef::ST_Function) {
Expected<StringRef> Name = Sym.getName();
if (!Name) {
// TODO: Actually report errors helpfully.
consumeError(Name.takeError());
continue;
}
Expected<uint64_t> AddrOrErr = Sym.getAddress();
if (!AddrOrErr) {
// TODO: Actually report errors helpfully.
consumeError(AddrOrErr.takeError());
continue;
}
uint64_t Addr = *AddrOrErr;
uint64_t Size = P.second;
// If we're not using the debug object, compute the address of the
// symbol in memory (rather than that in the unrelocated object file)
// and use that to query the DWARFContext.
if (!UseDebugObj && LoadObjects) {
auto SecOrErr = Sym.getSection();
if (!SecOrErr) {
// TODO: Actually report errors helpfully.
consumeError(SecOrErr.takeError());
continue;
}
object::section_iterator Sec = *SecOrErr;
StringRef SecName;
Sec->getName(SecName);
//.........这里部分代码省略.........
示例8: executeInput
static int executeInput() {
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &File : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(File);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Resove all the relocations we can.
// FIXME: Error out if there are unresolved relocations.
Dyld.resolveRelocations();
// Get the address of the entry point (_main by default).
void *MainAddress = Dyld.getSymbolLocalAddress(EntryPoint);
if (!MainAddress)
ErrorAndExit("no definition for '" + EntryPoint + "'");
// Invalidate the instruction cache for each loaded function.
for (auto &FM : MemMgr.FunctionMemory) {
// Make sure the memory is executable.
// setExecutable will call InvalidateInstructionCache.
std::string ErrorStr;
if (!sys::Memory::setExecutable(FM, &ErrorStr))
ErrorAndExit("unable to mark function executable: '" + ErrorStr + "'");
}
// Dispatch to _main().
errs() << "loaded '" << EntryPoint << "' at: " << (void*)MainAddress << "\n";
int (*Main)(int, const char**) =
(int(*)(int,const char**)) uintptr_t(MainAddress);
const char **Argv = new const char*[2];
// Use the name of the first input object module as argv[0] for the target.
Argv[0] = InputFileList[0].c_str();
Argv[1] = nullptr;
return Main(1, Argv);
}
示例9: startCmdLine
//Command line decoder control
void startCmdLine(){
LLVMContext &Context = getGlobalContext();
for (unsigned int i =0 ; i < PassList.size(); i++ ){
cout << "Pass added: "<< PassList[i]->getPassName() << endl;
cout << "Argument name :" << PassList[i]->getPassArgument() << endl;
}
clock_t timer = clock();
//Parsing XDF file
std::cout << "Parsing file " << XDFFile.getValue() << "." << endl;
XDFParser xdfParser(Verbose);
Network* network = xdfParser.parseFile(XDFFile, Context);
cout << "Network parsed in : "<< (clock() - timer) * 1000 / CLOCKS_PER_SEC << " ms, start engine" << endl;
//Parsing XCF file if needed
if(XCFFile != "") {
std::cout << "Parsing file " << XCFFile.getValue() << "." << endl;
XCFParser xcfParser(Verbose);
map<string, string>* mapping = xcfParser.parseFile(XCFFile);
network->setMapping(mapping);
}
if (enableTrace){
setTraces(network);
}
//Load network
engine->load(network);
// Optimizing decoder
if (optLevel > 0){
engine->optimize(network, optLevel);
}
// Verify the given decoder if needed
if (Verify){
engine->verify(network, "error.txt");
}
// Set input file
input_file = (char*)VidFile.c_str();
// Print the given decoder if needed
if (OutputDir != ""){
engine->print(network);
}
//Run network
engine->run(network);
cout << "End of Jade" << endl;
cout << "Total time: " << (clock() - timer) * 1000 / CLOCKS_PER_SEC << " ms" << endl;
if(XCFFile != "") {
cout << "Note: This execution time is calculated from CPU clock. When more than 1 thread were run, "
"the value displayed is higher than the real execution time." << endl;
}
}
示例10: main
//.........这里部分代码省略.........
if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
FPasses.reset(new FunctionPassManager(M.get()));
if (TD)
FPasses->add(new DataLayout(*TD));
if (TM.get())
TM->addAnalysisPasses(*FPasses);
}
if (PrintBreakpoints) {
// Default to standard output.
if (!Out) {
if (OutputFilename.empty())
OutputFilename = "-";
std::string ErrorInfo;
Out.reset(new tool_output_file(OutputFilename.c_str(), ErrorInfo,
sys::fs::F_Binary));
if (!ErrorInfo.empty()) {
errs() << ErrorInfo << '\n';
return 1;
}
}
Passes.add(new BreakpointPrinter(Out->os()));
NoOutput = true;
}
// If the -strip-debug command line option was specified, add it. If
// -std-compile-opts was also specified, it will handle StripDebug.
if (StripDebug && !StandardCompileOpts)
addPass(Passes, createStripSymbolsPass(true));
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
// Check to see if -std-compile-opts was specified before this option. If
// so, handle it.
if (StandardCompileOpts &&
StandardCompileOpts.getPosition() < PassList.getPosition(i)) {
AddStandardCompilePasses(Passes);
StandardCompileOpts = false;
}
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 1, 0);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 0);
OptLevelO2 = false;
}
if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 1);
OptLevelOs = false;
}
if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 2);
OptLevelOz = false;
示例11: main
//===----------------------------------------------------------------------===//
// main for instrument
//
int main(int argc, char **argv) {
llvm_shutdown_obj X; // Call llvm_shutdown() on exit.
LLVMContext &Context = getGlobalContext();
try {
cl::ParseCommandLineOptions(argc, argv,
"zoltar .bc -> .bc instrumenter and mutator\n");
sys::PrintStackTraceOnErrorSignal();
// Allocate a full target machine description only if necessary.
// FIXME: The choice of target should be controllable on the command line.
std::auto_ptr<TargetMachine> target;
std::string ErrorMessage;
// Load the input module...
std::auto_ptr<Module> M;
if (MemoryBuffer *Buffer
= MemoryBuffer::getFileOrSTDIN(InputFilename, &ErrorMessage)) {
M.reset(ParseBitcodeFile(Buffer, Context, &ErrorMessage));
delete Buffer;
}
if (M.get() == 0) {
errs() << argv[0] << ": ";
if (ErrorMessage.size())
errs() << ErrorMessage << "\n";
else
errs() << "bitcode didn't read correctly.\n";
return 1;
}
// Figure out what stream we are supposed to write to...
// FIXME: outs() is not binary!
raw_ostream *Out = &outs(); // Default to printing to stdout...
if (OutputFilename != "-") {
std::string ErrorInfo;
/*TODO: solve this problem */
//Out = new raw_fd_ostream(OutputFilename.c_str(), /*Binary=*/true,
// Force, ErrorInfo);
Out = new raw_fd_ostream(OutputFilename.c_str(),ErrorInfo,0);
if (!ErrorInfo.empty()) {
errs() << ErrorInfo << '\n';
if (!Force)
errs() << "Use -f command line argument to force output\n";
delete Out;
return 1;
}
// Make sure that the Output file gets unlinked from the disk if we get a
// SIGINT
sys::RemoveFileOnSignal(sys::Path(OutputFilename));
}
// If the output is set to be emitted to standard out, and standard out is a
// console, print out a warning message and refuse to do it. We don't
// impress anyone by spewing tons of binary goo to a terminal.
if (!Force && !NoOutput && CheckBitcodeOutputToConsole(*Out,!Quiet)) {
NoOutput = true;
}
// Create a PassManager to hold and optimize the collection of passes we are
// about to build...
//
PassManager Passes;
// Add an appropriate TargetData instance for this module...
Passes.add(new TargetData(M.get()));
// Create a new instrumentation pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
const PassInfo *PassInf = PassList[i];
Pass *P = 0;
if (PassInf->getNormalCtor())
P = PassInf->getNormalCtor()();
else
errs() << argv[0] << ": cannot create pass: "
<< PassInf->getPassName() << "\n";
if (P) {
Passes.add(P);
}
}
// Enable the specified mutation operators
if (!MutOps) {
OperatorManager* OM = OperatorManager::getInstance();
OperatorInfoList::iterator oit;
for (oit = OM->getRegistered().begin(); oit != OM->getRegistered().end(); oit++) {
(*oit)->setEnabled(true);
}
} else {
for (unsigned i = 0; i < OperatorList.size(); ++i) {
OperatorInfo *OInf = OperatorList[i];
OInf->setEnabled(true);
}
//.........这里部分代码省略.........
示例12: process
int ObjectGenerator::process(Module *module) {
cerr << "Starting object generation" << endl;
cerr.flush();
// if (false) {
//
// Initialize targets first, so that --version shows registered targets.
//
InitializeAllTargets();
InitializeAllAsmPrinters();
//
// Load the module to be compiled...
//
SMDiagnostic Err;
Module &mod = *module;
//
// If we are supposed to override the target triple, do so now.
//
if (! TargetTriple.empty())
mod.setTargetTriple(TargetTriple);
Triple TheTriple(mod.getTargetTriple());
if (TheTriple.getTriple().empty())
TheTriple.setTriple(sys::getHostTriple());
//
// Allocate target machine. First, check whether the user has explicitly
// specified an architecture to compile for. If so we have to look it up by
// name, because it might be a backend that has no mapping to a target triple.
//
const Target *TheTarget = 0;
if (! MArch.empty()) {
for (TargetRegistry::iterator it = TargetRegistry::begin(), ie = TargetRegistry::end(); it != ie; ++it) {
if (MArch == it -> getName()) {
TheTarget = &*it;
break;
}
}
if (! TheTarget) {
errs() << "RoseToLLVM" /*argv[0]*/ << ": error: invalid target '" << MArch << "'.\n";
return 1;
}
//
// Adjust the triple to match (if known), otherwise stick with the
// module/host triple.
//
Triple::ArchType Type = Triple::getArchTypeForLLVMName(MArch);
if (Type != Triple::UnknownArch)
TheTriple.setArch(Type);
} else {
std::string Err;
TheTarget = TargetRegistry::lookupTarget(TheTriple.getTriple(), Err);
if (TheTarget == 0) {
errs() << "RoseToLLVM" /*argv[0]*/ << ": error auto-selecting target for module '"
<< Err << "'. Please use the -march option to explicitly "
<< "pick a target.\n";
return 1;
}
}
//
// Package up features to be passed to target/subtarget
//
std::string FeaturesStr;
if (MCPU.size() || MAttrs.size()) {
SubtargetFeatures Features;
Features.setCPU(MCPU);
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
std::auto_ptr<TargetMachine> target(TheTarget->createTargetMachine(TheTriple.getTriple(), FeaturesStr));
assert(target.get() && "Could not allocate target machine!");
TargetMachine &Target = *target.get();
//
// Figure out where we are going to send the output...
//
formatted_raw_ostream *Out = GetOutputStream(TheTarget -> getName(), "RoseToLLVM"/*argv[0]*/);
if (Out == 0) return 1;
CodeGenOpt::Level OLvl = CodeGenOpt::Default;
switch (OptLevel) {
default:
cerr << "The optimization level is " << OptLevel << endl;
cerr.flush();
errs() << "RoseToLLVM" /*argv[0]*/ << ": invalid optimization level.\n";
return 1;
case ' ': break;
case '0': OLvl = CodeGenOpt::None; break;
case '1': OLvl = CodeGenOpt::Less; break;
case '2': OLvl = CodeGenOpt::Default; break;
case '3': OLvl = CodeGenOpt::Aggressive; break;
}
//.........这里部分代码省略.........
示例13: main
//.........这里部分代码省略.........
M->setDataLayout(DefaultDataLayout);
}
// Add internal analysis passes from the target machine.
Passes.add(createTargetTransformInfoWrapperPass(TM ? TM->getTargetIRAnalysis()
: TargetIRAnalysis()));
std::unique_ptr<legacy::FunctionPassManager> FPasses;
if (OptLevelO1 || OptLevelO2 || OptLevelOs || OptLevelOz || OptLevelO3) {
FPasses.reset(new legacy::FunctionPassManager(M.get()));
FPasses->add(createTargetTransformInfoWrapperPass(
TM ? TM->getTargetIRAnalysis() : TargetIRAnalysis()));
}
if (PrintBreakpoints) {
// Default to standard output.
if (!Out) {
if (OutputFilename.empty())
OutputFilename = "-";
std::error_code EC;
Out = llvm::make_unique<tool_output_file>(OutputFilename, EC,
sys::fs::F_None);
if (EC) {
errs() << EC.message() << '\n';
return 1;
}
}
Passes.add(createBreakpointPrinter(Out->os()));
NoOutput = true;
}
// Create a new optimization pass for each one specified on the command line
for (unsigned i = 0; i < PassList.size(); ++i) {
if (StandardLinkOpts &&
StandardLinkOpts.getPosition() < PassList.getPosition(i)) {
AddStandardLinkPasses(Passes);
StandardLinkOpts = false;
}
if (OptLevelO1 && OptLevelO1.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 1, 0);
OptLevelO1 = false;
}
if (OptLevelO2 && OptLevelO2.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 0);
OptLevelO2 = false;
}
if (OptLevelOs && OptLevelOs.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 1);
OptLevelOs = false;
}
if (OptLevelOz && OptLevelOz.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 2, 2);
OptLevelOz = false;
}
if (OptLevelO3 && OptLevelO3.getPosition() < PassList.getPosition(i)) {
AddOptimizationPasses(Passes, *FPasses, 3, 0);
OptLevelO3 = false;
}
const PassInfo *PassInf = PassList[i];
示例14: linkAndVerify
// Load and link the objects specified on the command line, but do not execute
// anything. Instead, attach a RuntimeDyldChecker instance and call it to
// verify the correctness of the linked memory.
static int linkAndVerify() {
// Check for missing triple.
if (TripleName == "")
ErrorAndExit("-triple required when running in -verify mode.");
// Look up the target and build the disassembler.
Triple TheTriple(Triple::normalize(TripleName));
std::string ErrorStr;
const Target *TheTarget =
TargetRegistry::lookupTarget("", TheTriple, ErrorStr);
if (!TheTarget)
ErrorAndExit("Error accessing target '" + TripleName + "': " + ErrorStr);
TripleName = TheTriple.getTriple();
std::unique_ptr<MCSubtargetInfo> STI(
TheTarget->createMCSubtargetInfo(TripleName, MCPU, ""));
if (!STI)
ErrorAndExit("Unable to create subtarget info!");
std::unique_ptr<MCRegisterInfo> MRI(TheTarget->createMCRegInfo(TripleName));
if (!MRI)
ErrorAndExit("Unable to create target register info!");
std::unique_ptr<MCAsmInfo> MAI(TheTarget->createMCAsmInfo(*MRI, TripleName));
if (!MAI)
ErrorAndExit("Unable to create target asm info!");
MCContext Ctx(MAI.get(), MRI.get(), nullptr);
std::unique_ptr<MCDisassembler> Disassembler(
TheTarget->createMCDisassembler(*STI, Ctx));
if (!Disassembler)
ErrorAndExit("Unable to create disassembler!");
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
std::unique_ptr<MCInstPrinter> InstPrinter(
TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
// Load any dylibs requested on the command line.
loadDylibs();
// Instantiate a dynamic linker.
TrivialMemoryManager MemMgr;
doPreallocation(MemMgr);
RuntimeDyld Dyld(MemMgr, MemMgr);
Dyld.setProcessAllSections(true);
RuntimeDyldChecker Checker(Dyld, Disassembler.get(), InstPrinter.get(),
llvm::dbgs());
// If we don't have any input files, read from stdin.
if (!InputFileList.size())
InputFileList.push_back("-");
for (auto &Filename : InputFileList) {
// Load the input memory buffer.
ErrorOr<std::unique_ptr<MemoryBuffer>> InputBuffer =
MemoryBuffer::getFileOrSTDIN(Filename);
if (std::error_code EC = InputBuffer.getError())
ErrorAndExit("unable to read input: '" + EC.message() + "'");
Expected<std::unique_ptr<ObjectFile>> MaybeObj(
ObjectFile::createObjectFile((*InputBuffer)->getMemBufferRef()));
if (!MaybeObj) {
std::string Buf;
raw_string_ostream OS(Buf);
logAllUnhandledErrors(MaybeObj.takeError(), OS, "");
OS.flush();
ErrorAndExit("unable to create object file: '" + Buf + "'");
}
ObjectFile &Obj = **MaybeObj;
// Load the object file
Dyld.loadObject(Obj);
if (Dyld.hasError()) {
ErrorAndExit(Dyld.getErrorString());
}
}
// Re-map the section addresses into the phony target address space and add
// dummy symbols.
remapSectionsAndSymbols(TheTriple, MemMgr, Checker);
// Resolve all the relocations we can.
Dyld.resolveRelocations();
// Register EH frames.
Dyld.registerEHFrames();
int ErrorCode = checkAllExpressions(Checker);
if (Dyld.hasError())
ErrorAndExit("RTDyld reported an error applying relocations:\n " +
Dyld.getErrorString());
//.........这里部分代码省略.........
示例15: main
// main - Entry point for the llc compiler.
//
int main(int argc, char **argv) {
llvm_shutdown_obj X; // Call llvm_shutdown() on exit.
cl::ParseCommandLineOptions(argc, argv, "llvm system compiler\n");
sys::PrintStackTraceOnErrorSignal();
// Load the module to be compiled...
std::string ErrorMessage;
std::auto_ptr<Module> M;
std::auto_ptr<MemoryBuffer> Buffer(
MemoryBuffer::getFileOrSTDIN(InputFilename, &ErrorMessage));
if (Buffer.get())
M.reset(ParseBitcodeFile(Buffer.get(), &ErrorMessage));
if (M.get() == 0) {
std::cerr << argv[0] << ": bitcode didn't read correctly.\n";
std::cerr << "Reason: " << ErrorMessage << "\n";
return 1;
}
Module &mod = *M.get();
// If we are supposed to override the target triple, do so now.
if (!TargetTriple.empty())
mod.setTargetTriple(TargetTriple);
// Allocate target machine. First, check whether the user has
// explicitly specified an architecture to compile for.
if (MArch == 0) {
std::string Err;
MArch = TargetMachineRegistry::getClosestStaticTargetForModule(mod, Err);
if (MArch == 0) {
std::cerr << argv[0] << ": error auto-selecting target for module '"
<< Err << "'. Please use the -march option to explicitly "
<< "pick a target.\n";
return 1;
}
}
// Package up features to be passed to target/subtarget
std::string FeaturesStr;
if (MCPU.size() || MAttrs.size()) {
SubtargetFeatures Features;
Features.setCPU(MCPU);
for (unsigned i = 0; i != MAttrs.size(); ++i)
Features.AddFeature(MAttrs[i]);
FeaturesStr = Features.getString();
}
std::auto_ptr<TargetMachine> target(MArch->CtorFn(mod, FeaturesStr));
assert(target.get() && "Could not allocate target machine!");
TargetMachine &Target = *target.get();
// Figure out where we are going to send the output...
std::ostream *Out = GetOutputStream(argv[0]);
if (Out == 0) return 1;
// If this target requires addPassesToEmitWholeFile, do it now. This is
// used by strange things like the C backend.
if (Target.WantsWholeFile()) {
PassManager PM;
PM.add(new TargetData(*Target.getTargetData()));
if (!NoVerify)
PM.add(createVerifierPass());
// Ask the target to add backend passes as necessary.
if (Target.addPassesToEmitWholeFile(PM, *Out, FileType, Fast)) {
std::cerr << argv[0] << ": target does not support generation of this"
<< " file type!\n";
if (Out != &std::cout) delete Out;
// And the Out file is empty and useless, so remove it now.
sys::Path(OutputFilename).eraseFromDisk();
return 1;
}
PM.run(mod);
} else {
// Build up all of the passes that we want to do to the module.
ExistingModuleProvider Provider(M.release());
FunctionPassManager Passes(&Provider);
Passes.add(new TargetData(*Target.getTargetData()));
#ifndef NDEBUG
if (!NoVerify)
Passes.add(createVerifierPass());
#endif
// Ask the target to add backend passes as necessary.
MachineCodeEmitter *MCE = 0;
switch (Target.addPassesToEmitFile(Passes, *Out, FileType, Fast)) {
default:
assert(0 && "Invalid file model!");
return 1;
case FileModel::Error:
std::cerr << argv[0] << ": target does not support generation of this"
<< " file type!\n";
if (Out != &std::cout) delete Out;
// And the Out file is empty and useless, so remove it now.
sys::Path(OutputFilename).eraseFromDisk();
return 1;
//.........这里部分代码省略.........