本文整理汇总了C++中arma::cube::slice方法的典型用法代码示例。如果您正苦于以下问题:C++ cube::slice方法的具体用法?C++ cube::slice怎么用?C++ cube::slice使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类arma::cube
的用法示例。
在下文中一共展示了cube::slice方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getVgamma_hierIRT
// // [[Rcpp::export()]]
void getVgamma_hierIRT(arma::cube &Vgamma,
arma::mat &gammasigma,
arma::mat &Ebb,
const arma::mat &g,
const arma::mat &i,
const arma::mat &j,
const arma::mat &z,
const int NL,
const int NG
) {
signed int m, l;
#pragma omp parallel for private(m,l)
for(m=0; m < NG; m++){
Vgamma.slice(m) = inv_sympd(gammasigma);
for(l=0; l < NL; l++){
if( g(i(l,0),0)==m ) Vgamma.slice(m) += Ebb(j(l,0),0) * trans(z.row(i(l,0))) * z.row(i(l,0));
}
// Note this yield C_inv, not C_m
Vgamma.slice(m) = inv_sympd(Vgamma.slice(m));
} // for(k=0; n < NJ; k++){
return;
}
示例2: gradFGdata
// compute the gradients of f and g at all data points
int dtq::gradFGdata(arma::cube &gfd, arma::cube &ggd)
{
for (int j=0; j<(ltvec-1); j++)
{
for (int l=0; l<numts; l++)
{
double xi = (*odata)(j,l);
gfd.slice(l).col(j) = (*gradf)(xi,curtheta);
ggd.slice(l).col(j) = (*gradg)(xi,curtheta);
}
}
return 0;
}
示例3: mStep
//' @title
//' mStep
//' @description
//' Return the parameters' posterior.
//'
//' @param DP
//' @param DataStorage
//' @param xi
//' @param zeta
//' @export
// [[Rcpp::export]]
arma::cube mStep(NumericVector prior, arma::cube posterior, NumericVector data, IntegerVector xi, IntegerVector zeta){
//NumericVector data = DataStorage.slot("simulation");
const int N = data.length();
//arma::cube prior = DP.slot("prior");
arma::mat mu = posterior.slice(0);
arma::mat Nmat = posterior.slice(1);
arma::mat v = posterior.slice(2);
arma::mat vs2 = posterior.slice(3);
std::fill(mu.begin(), mu.end(), prior[0]);
std::fill(Nmat.begin(), Nmat.end(), prior[1]);
std::fill(v.begin(), v.end(), prior[2]);
std::fill(vs2.begin(), vs2.end(), prior[3]);
int temp;
double update_mu;
double update_vs2;
double update_n;
double update_v;
for(int n=0; n < N; n++){
// if n is not NA
if(data(n) == data(n)){
temp = xi[n];
const int l = temp - 1;
temp = zeta[n];
const int k = temp - 1;
update_mu = (Nmat(l,k)*mu(l,k)+data(n))/(1+Nmat(l,k));
update_vs2 = vs2(l,k) + (Nmat(l,k)*std::pow((mu(l,k)-data(n)),2)/(1+Nmat(l,k)));
update_n = Nmat(l,k) + 1.0;
update_v = v(l,k) + 1.0;
mu(l,k) = update_mu;
Nmat(l,k) = update_n;
v(l,k) = update_v;
vs2(l,k) = update_vs2;
}
}
arma::cube toRet = posterior;
toRet.slice(0) = mu;
toRet.slice(1) = Nmat;
toRet.slice(2) = v;
toRet.slice(3) = vs2;
//DP.slot("prior") = posterior;
return toRet;
}
示例4: phatinitgrad
// build the big matrix of initial conditions
// and the gradients of those initial conditions!
int dtq::phatinitgrad(arma::mat &phatI, arma::cube &phatG, const arma::cube &gfd, const arma::cube &ggd)
{
double myh12 = sqrt(myh);
for (int j=0; j<(ltvec-1); j++)
{
// go through each particular initial condition at this time
// and make a Gaussian
for (int l=0; l<numts; l++)
{
double xi = (*odata)(j,l);
double mu = xi + ((*f)(xi,curtheta))*myh;
double gval = (*g)(xi,curtheta);
double sig = gval*myh12;
arma::vec thisphat = gausspdf(yvec,mu,sig);
phatI.col(j) += thisphat;
for (int i=0; i<curtheta.n_elem; i++)
{
arma::vec pgtemp = (yvec - mu)*gfd(i,j,l)/(gval*gval);
pgtemp -= ggd(i,j,l)/gval;
pgtemp += arma::pow(yvec - mu,2)*ggd(i,j,l)/(myh*gval*gval*gval);
phatG.slice(i).col(j) += pgtemp % thisphat;
}
}
}
phatI = phatI / numts;
phatG = phatG / numts;
return 0;
}
示例5: get_Si
arma::cube get_Si(int n_states, arma::cube S, arma::mat m) {
arma::cube Si(n_states, n_states, n_states);
for (int i=0; i<n_states; i++) {
Si.slice(i) = S.slice(i) * m;
}
return Si;
}
示例6: internalBackward
void internalBackward(const arma::mat& transition, const arma::cube& emission,
const arma::ucube& obs, arma::cube& beta, const arma::mat& scales, unsigned int threads) {
#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) num_threads(threads) \
default(none) shared(beta, scales, obs, emission,transition)
for (unsigned int k = 0; k < obs.n_slices; k++) {
beta.slice(k).col(obs.n_cols - 1).fill(scales(obs.n_cols - 1, k));
for (int t = obs.n_cols - 2; t >= 0; t--) {
arma::vec tmpbeta = beta.slice(k).col(t + 1);
for (unsigned int r = 0; r < obs.n_rows; r++) {
tmpbeta %= emission.slice(r).col(obs(r, t + 1, k));
}
beta.slice(k).col(t) = transition * tmpbeta * scales(t, k);
}
}
}
示例7: Bellman
// Bellman recursion using row rearrangement
//[[Rcpp::export]]
Rcpp::List Bellman(const arma::mat& grid,
Rcpp::NumericVector reward_,
const arma::cube& scrap,
Rcpp::NumericVector control_,
const arma::cube& disturb,
const arma::vec& weight) {
// Passing R objects to C++
const std::size_t n_grid = grid.n_rows;
const std::size_t n_dim = grid.n_cols;
const arma::ivec r_dims = reward_.attr("dim");
const std::size_t n_pos = r_dims(3);
const std::size_t n_action = r_dims(2);
const std::size_t n_dec = r_dims(4) + 1;
const arma::cube
reward(reward_.begin(), n_grid, n_dim * n_action * n_pos, n_dec - 1, false);
const arma::ivec c_dims = control_.attr("dim");
arma::cube control2;
arma::imat control;
bool full_control;
if (c_dims.n_elem == 3) {
full_control = false;
arma::cube temp_control2(control_.begin(), n_pos, n_action, n_pos, false);
control2 = temp_control2;
} else {
full_control = true;
arma::mat temp_control(control_.begin(), n_pos, n_action, false);
control = arma::conv_to<arma::imat>::from(temp_control);
}
const std::size_t n_disturb = disturb.n_slices;
// Bellman recursion
arma::cube value(n_grid, n_dim * n_pos, n_dec);
arma::cube cont(n_grid, n_dim * n_pos, n_dec - 1, arma::fill::zeros);
arma::mat d_value(n_grid, n_dim);
Rcpp::Rcout << "At dec: " << n_dec - 1 << "...";
for (std::size_t pp = 0; pp < n_pos; pp++) {
value.slice(n_dec - 1).cols(n_dim * pp, n_dim * (pp + 1) - 1) =
scrap.slice(pp);
}
for (int tt = (n_dec - 2); tt >= 0; tt--) {
Rcpp::Rcout << tt;
// Approximating the continuation value
for (std::size_t pp = 0; pp < n_pos; pp++) {
cont.slice(tt).cols(n_dim * pp, n_dim * (pp + 1) - 1) =
Expected(grid,
value.slice(tt + 1).cols(pp * n_dim, n_dim * (pp + 1) - 1),
disturb, weight);
}
Rcpp::Rcout << "..";
// Optimise value function
if (full_control) {
BellmanOptimal(grid, control, value, reward, cont, tt);
} else {
BellmanOptimal2(grid, control2, value, reward, cont, tt);
}
Rcpp::Rcout << ".";
}
return Rcpp::List::create(Rcpp::Named("value") = value,
Rcpp::Named("expected") = cont);
}
示例8: scale
arma::mat cvt_rgb2gray(const arma::cube &image) {
arma::vec scale = { 0.3, 0.6, 0.1 };
arma::mat new_image = arma::zeros<arma::mat>(image.n_rows, image.n_cols);
for (arma::uword i = 0; i < image.n_slices; i++) {
new_image += scale(i) * image.slice(i); // weighted construction
}
return new_image;
}
示例9:
void
HMM::computeXiCached() {
arma::mat temp = B_.rows(1,T_-1) % beta_.cols(1,T_-1).t();
for(unsigned int i = 0; i < N_; ++i) {
xi_.slice(i) = temp %
(alpha_(i,arma::span(0, T_-2)).t() * A_.row(i));
}
}
示例10: getVb2_dynIRT
// // [[Rcpp::export()]]
void getVb2_dynIRT(arma::cube &Vb2,
const arma::cube &Ex2x2,
const arma::mat &sigma,
const int T
) {
int t;
#pragma omp parallel for
for(t=0; t<T; t++){
Vb2.slice(t) = inv_sympd(inv_sympd(sigma) + Ex2x2.slice(t)) ;
}
return;
}
示例11: subsetCube
// how to subset outer dimension of arma cube by IntegerVector
// [[Rcpp::export]]
arma::cube subsetCube(arma::cube data, IntegerVector index){
if(data.n_slices != index.size()){ //informative error message
Rcout << "subsetCube requires an array and index of the same outer dimension!" << std::endl;
}
arma::cube out = arma::zeros(data.n_rows,data.n_cols,data.n_slices);
for(int i=0; i<data.n_slices; i++){
out.slice(i) = data.slice(index(i));
}
return(out);
}
示例12: log_weights
/*
* approx_model: Gaussian approximation of the original model
* t: Time point where the weights are computed
* alpha: Simulated particles
*/
arma::vec ung_ssm::log_weights(const ugg_ssm& approx_model,
const unsigned int t, const arma::cube& alpha) const {
arma::vec weights(alpha.n_slices, arma::fill::zeros);
if (arma::is_finite(y(t))) {
switch(distribution) {
case 0 :
for (unsigned int i = 0; i < alpha.n_slices; i++) {
double simsignal = alpha(0, t, i);
weights(i) = -0.5 * (simsignal + std::pow(y(t) / phi, 2.0) * std::exp(-simsignal)) +
0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
}
break;
case 1 :
for (unsigned int i = 0; i < alpha.n_slices; i++) {
double simsignal = arma::as_scalar(Z.col(t * Ztv).t() *
alpha.slice(i).col(t) + xbeta(t));
weights(i) = y(t) * simsignal - u(t) * std::exp(simsignal) +
0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
}
break;
case 2 :
for (unsigned int i = 0; i < alpha.n_slices; i++) {
double simsignal = arma::as_scalar(Z.col(t * Ztv).t() *
alpha.slice(i).col(t) + xbeta(t));
weights(i) = y(t) * simsignal - u(t) * std::log1p(std::exp(simsignal)) +
0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
}
break;
case 3 :
for (unsigned int i = 0; i < alpha.n_slices; i++) {
double simsignal = arma::as_scalar(Z.col(t * Ztv).t() *
alpha.slice(i).col(t) + xbeta(t));
weights(i) = y(t) * simsignal - (y(t) + phi) *
std::log(phi + u(t) * std::exp(simsignal)) +
0.5 * std::pow((approx_model.y(t) - simsignal) / approx_model.H(t), 2.0);
}
break;
}
}
return weights;
}
示例13: update_beta
// @title Gradient step for regression coefficient
// @param X The ratings matrix. Unobserved entries must be marked NA. Users
// must be along rows, and tracks must be along columns.
// @param P The learned user latent factors.
// @param Q The learned track latent factors.
// @param beta The learned regression coefficients.
// @param lambda The regularization parameter for beta.
// @param gamma The step-size in the gradient descent.
// @return The update regression coefficients.
arma::vec update_beta(arma::mat X, arma::cube Z, arma::mat P, arma::mat Q,
arma::vec beta, double lambda, double gamma) {
arma::uvec obs_ix = arma::conv_to<arma::uvec>::from(arma::find_finite(X));
arma::mat resid = X - P * Q.t() - cube_multiply(Z, beta);
arma::vec beta_grad = arma::zeros(beta.size());
for(int l = 0; l < beta.size(); l++) {
beta_grad[l] = accu(resid(obs_ix) % Z.slice(l)(obs_ix));
}
beta_grad = 2 * (lambda * beta - beta_grad);
return beta - gamma * beta_grad;
}
示例14: logLikMixHMM
NumericVector logLikMixHMM(const arma::mat& transition, const arma::cube& emission,
const arma::vec& init, const arma::ucube& obs, const arma::mat& coef, const arma::mat& X,
const arma::uvec& numberOfStates, unsigned int threads) {
arma::mat weights = exp(X * coef).t();
if (!weights.is_finite()) {
return wrap(-arma::datum::inf);
}
weights.each_row() /= sum(weights, 0);
arma::vec ll(obs.n_slices);
arma::sp_mat transition_t(transition.t());
#pragma omp parallel for if(obs.n_slices >= threads) schedule(static) num_threads(threads) \
default(none) shared(ll, obs, weights, init, emission, transition_t, numberOfStates)
for (unsigned int k = 0; k < obs.n_slices; k++) {
arma::vec alpha = init % reparma(weights.col(k), numberOfStates);
for (unsigned int r = 0; r < obs.n_rows; r++) {
alpha %= emission.slice(r).col(obs(r, 0, k));
}
double tmp = sum(alpha);
ll(k) = log(tmp);
alpha /= tmp;
for (unsigned int t = 1; t < obs.n_cols; t++) {
alpha = transition_t * alpha;
for (unsigned int r = 0; r < obs.n_rows; r++) {
alpha %= emission.slice(r).col(obs(r, t, k));
}
tmp = sum(alpha);
ll(k) += log(tmp);
alpha /= tmp;
}
}
return wrap(ll);
}
示例15:
arma::mat exact_trans2(arma::cube joint_means_trans, Rcpp::List eigen_decomp, double time_int, arma::ivec absorb_states, int start_state, int end_state, int exact_time_index){
arma::mat rate_matrix=Rcpp::as<arma::mat>(eigen_decomp["rate"]);
arma::mat out=arma::zeros<arma::mat>(rate_matrix.n_rows,rate_matrix.n_rows);
arma::mat temp=arma::zeros<arma::mat>(rate_matrix.n_rows,rate_matrix.n_rows);
int i=start_state-1;
int j=end_state-1;
int k=0;
bool i_in_A=0;
bool j_in_A=0;
//std::cout<<absorb_states;
while(i_in_A==0 && k<absorb_states.size()){
int test=absorb_states[k]-1;
if(test==i){
i_in_A=1;
}
k++;
}
k=0;
while(j_in_A==0 && k<absorb_states.size()){
int test=absorb_states[k]-1;
if(test==j){
j_in_A=1;
}
k++;
}
int in_either=i_in_A+j_in_A;
if(in_either==0){
for(int l=0;l<absorb_states.size();l++){
int absorb_state=absorb_states[l]-1;
temp.col(absorb_state)=rate_matrix.col(absorb_state);
}
out=joint_means_trans.slice(exact_time_index)*temp;
}
if(i_in_A==0 && j_in_A==1){
arma::mat prob_mat=mat_exp_eigen_cpp(eigen_decomp,time_int);
out.col(j)=prob_mat.col(i)*rate_matrix(i,j);
}
return(out);
}