本文整理汇总了C++中api::MatrixWorkspace_sptr::binEdges方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixWorkspace_sptr::binEdges方法的具体用法?C++ MatrixWorkspace_sptr::binEdges怎么用?C++ MatrixWorkspace_sptr::binEdges使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类api::MatrixWorkspace_sptr
的用法示例。
在下文中一共展示了MatrixWorkspace_sptr::binEdges方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: normaliseBinByBin
/** Carries out the bin-by-bin normalization
* @param inputWorkspace The input workspace
* @param outputWorkspace The result workspace
*/
void NormaliseToMonitor::normaliseBinByBin(
const API::MatrixWorkspace_sptr &inputWorkspace,
API::MatrixWorkspace_sptr &outputWorkspace) {
EventWorkspace_sptr inputEvent =
boost::dynamic_pointer_cast<EventWorkspace>(inputWorkspace);
// Only create output workspace if different to input one
if (outputWorkspace != inputWorkspace) {
if (inputEvent) {
outputWorkspace = inputWorkspace->clone();
} else
outputWorkspace = WorkspaceFactory::Instance().create(inputWorkspace);
}
auto outputEvent =
boost::dynamic_pointer_cast<EventWorkspace>(outputWorkspace);
// Get hold of the monitor spectrum
const auto &monX = m_monitor->binEdges(0);
auto monY = m_monitor->counts(0);
auto monE = m_monitor->countStandardDeviations(0);
// Calculate the overall normalization just the once if bins are all matching
if (m_commonBins)
this->normalisationFactor(monX, monY, monE);
const size_t numHists = inputWorkspace->getNumberHistograms();
auto specLength = inputWorkspace->blocksize();
// Flag set when a division by 0 is found
bool hasZeroDivision = false;
Progress prog(this, 0.0, 1.0, numHists);
// Loop over spectra
PARALLEL_FOR_IF(
Kernel::threadSafe(*inputWorkspace, *outputWorkspace, *m_monitor))
for (int64_t i = 0; i < int64_t(numHists); ++i) {
PARALLEL_START_INTERUPT_REGION
prog.report();
const auto &X = inputWorkspace->binEdges(i);
// If not rebinning, just point to our monitor spectra, otherwise create new
// vectors
auto Y = (m_commonBins ? monY : Counts(specLength));
auto E = (m_commonBins ? monE : CountStandardDeviations(specLength));
if (!m_commonBins) {
// ConvertUnits can give X vectors of all zeros - skip these, they cause
// problems
if (X.back() == 0.0 && X.front() == 0.0)
continue;
// Rebin the monitor spectrum to match the binning of the current data
// spectrum
VectorHelper::rebinHistogram(
monX.rawData(), monY.mutableRawData(), monE.mutableRawData(),
X.rawData(), Y.mutableRawData(), E.mutableRawData(), false);
// Recalculate the overall normalization factor
this->normalisationFactor(X, Y, E);
}
if (inputEvent) {
// ----------------------------------- EventWorkspace
// ---------------------------------------
EventList &outEL = outputEvent->getSpectrum(i);
outEL.divide(X.rawData(), Y.mutableRawData(), E.mutableRawData());
} else {
// ----------------------------------- Workspace2D
// ---------------------------------------
auto &YOut = outputWorkspace->mutableY(i);
auto &EOut = outputWorkspace->mutableE(i);
const auto &inY = inputWorkspace->y(i);
const auto &inE = inputWorkspace->e(i);
outputWorkspace->mutableX(i) = inputWorkspace->x(i);
// The code below comes more or less straight out of Divide.cpp
for (size_t k = 0; k < specLength; ++k) {
// Get the input Y's
const double leftY = inY[k];
const double rightY = Y[k];
if (rightY == 0.0) {
hasZeroDivision = true;
}
// Calculate result and store in local variable to avoid overwriting
// original data if
// output workspace is same as one of the input ones
const double newY = leftY / rightY;
if (fabs(rightY) > 1.0e-12 && fabs(newY) > 1.0e-12) {
const double lhsFactor = (inE[k] < 1.0e-12 || fabs(leftY) < 1.0e-12)
? 0.0
: pow((inE[k] / leftY), 2);
const double rhsFactor =
E[k] < 1.0e-12 ? 0.0 : pow((E[k] / rightY), 2);
EOut[k] = std::abs(newY) * sqrt(lhsFactor + rhsFactor);
}
// Now store the result
//.........这里部分代码省略.........