本文整理汇总了C++中api::MatrixWorkspace_const_sptr::dataE方法的典型用法代码示例。如果您正苦于以下问题:C++ MatrixWorkspace_const_sptr::dataE方法的具体用法?C++ MatrixWorkspace_const_sptr::dataE怎么用?C++ MatrixWorkspace_const_sptr::dataE使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类api::MatrixWorkspace_const_sptr
的用法示例。
在下文中一共展示了MatrixWorkspace_const_sptr::dataE方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: fillOutputHist
/** Do the initial copy of the data from the input to the output workspace for histogram workspaces.
* Takes out the bin width if necessary.
* @param inputWS The input workspace
* @param outputWS The output workspace
*/
void ConvertUnits::fillOutputHist(const API::MatrixWorkspace_const_sptr inputWS, const API::MatrixWorkspace_sptr outputWS)
{
const int size = static_cast<int>(inputWS->blocksize());
// Loop over the histograms (detector spectra)
Progress prog(this,0.0,0.2,m_numberOfSpectra);
int64_t numberOfSpectra_i = static_cast<int64_t>(m_numberOfSpectra); // cast to make openmp happy
PARALLEL_FOR2(inputWS,outputWS)
for (int64_t i = 0; i < numberOfSpectra_i; ++i)
{
PARALLEL_START_INTERUPT_REGION
// Take the bin width dependency out of the Y & E data
if (m_distribution)
{
for (int j = 0; j < size; ++j)
{
const double width = std::abs( inputWS->dataX(i)[j+1] - inputWS->dataX(i)[j] );
outputWS->dataY(i)[j] = inputWS->dataY(i)[j]*width;
outputWS->dataE(i)[j] = inputWS->dataE(i)[j]*width;
}
}
else
{
// Just copy over
outputWS->dataY(i) = inputWS->dataY(i);
outputWS->dataE(i) = inputWS->dataE(i);
}
// Copy over the X data
outputWS->setX( i, inputWS->refX(i) );
prog.report("Convert to " + m_outputUnit->unitID());
PARALLEL_END_INTERUPT_REGION
}
PARALLEL_CHECK_INTERUPT_REGION
}
示例2: exec
/** Execute the algorithm.
*/
void DampSq::exec()
{
// TODO Auto-generated execute stub
// 1. Generate new workspace
API::MatrixWorkspace_const_sptr isqspace = getProperty("InputWorkspace");
API::MatrixWorkspace_sptr osqspace = WorkspaceFactory::Instance().create(isqspace, 1, isqspace->size(), isqspace->size());
int mode = getProperty("Mode");
double qmax = getProperty("QMax");
if (mode < 1 || mode > 4) {
g_log.error("Damp mode can only be 1, 2, 3, or 4");
return;
}
// 2. Get access to all
const MantidVec& iQVec = isqspace->dataX(0);
const MantidVec& iSVec = isqspace->dataY(0);
const MantidVec& iEVec = isqspace->dataE(0);
MantidVec& oQVec = osqspace->dataX(0);
MantidVec& oSVec = osqspace->dataY(0);
MantidVec& oEVec = osqspace->dataE(0);
// 3. Calculation
double dqmax = qmax - iQVec[0];
double damp;
for (unsigned int i = 0; i < iQVec.size(); i ++) {
// a) calculate damp coefficient
switch (mode) {
case 1:
damp = dampcoeff1(iQVec[i], qmax, dqmax);
break;
case 2:
damp = dampcoeff2(iQVec[i], qmax, dqmax);;
break;
case 3:
damp = dampcoeff3(iQVec[i], qmax, dqmax);;
break;
case 4:
damp = dampcoeff4(iQVec[i], qmax, dqmax);;
break;
default:
damp = 0;
break;
}
// b) calculate new S(q)
oQVec[i] = iQVec[i];
oSVec[i] = 1 + damp*(iSVec[i]-1);
oEVec[i] = damp*iEVec[i];
} // i
// 4. Over
setProperty("OutputWorkspace", osqspace);
return;
}