本文整理汇总了C++中api::IFunction_sptr::fix方法的典型用法代码示例。如果您正苦于以下问题:C++ IFunction_sptr::fix方法的具体用法?C++ IFunction_sptr::fix怎么用?C++ IFunction_sptr::fix使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类api::IFunction_sptr
的用法示例。
在下文中一共展示了IFunction_sptr::fix方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: copyInput
/**
* Execute smoothing of a single spectrum.
* @param inputWS :: A workspace to pick a spectrum from.
* @param wsIndex :: An index of a spectrum to smooth.
* @return :: A single-spectrum workspace with the smoothed data.
*/
API::MatrixWorkspace_sptr
WienerSmooth::smoothSingleSpectrum(API::MatrixWorkspace_sptr inputWS,
size_t wsIndex) {
size_t dataSize = inputWS->blocksize();
// it won't work for very small workspaces
if (dataSize < 4) {
g_log.debug() << "No smoothing, spectrum copied." << std::endl;
return copyInput(inputWS, wsIndex);
}
// Due to the way RealFFT works the input should be even-sized
const bool isOddSize = dataSize % 2 != 0;
if (isOddSize) {
// add a fake value to the end to make size even
inputWS = copyInput(inputWS, wsIndex);
wsIndex = 0;
auto &X = inputWS->dataX(wsIndex);
auto &Y = inputWS->dataY(wsIndex);
auto &E = inputWS->dataE(wsIndex);
double dx = X[dataSize - 1] - X[dataSize - 2];
X.push_back(X.back() + dx);
Y.push_back(Y.back());
E.push_back(E.back());
}
// the input vectors
auto &X = inputWS->readX(wsIndex);
auto &Y = inputWS->readY(wsIndex);
auto &E = inputWS->readE(wsIndex);
// Digital fourier transform works best for data oscillating around 0.
// Fit a spline with a small number of break points to the data.
// Make sure that the spline passes through the first and the last points
// of the data.
// The fitted spline will be subtracted from the data and the difference
// will be smoothed with the Wiener filter. After that the spline will be
// added to the smoothed data to produce the output.
// number of spline break points, must be smaller than the data size but
// between 2 and 10
size_t nbreak = 10;
if (nbreak * 3 > dataSize)
nbreak = dataSize / 3;
// NB. The spline mustn't fit too well to the data. If it does smoothing
// doesn't happen.
// TODO: it's possible that the spline is unnecessary and a simple linear
// function will
// do a better job.
g_log.debug() << "Spline break points " << nbreak << std::endl;
// define the spline
API::IFunction_sptr spline =
API::FunctionFactory::Instance().createFunction("BSpline");
auto xInterval = getStartEnd(X, inputWS->isHistogramData());
spline->setAttributeValue("StartX", xInterval.first);
spline->setAttributeValue("EndX", xInterval.second);
spline->setAttributeValue("NBreak", static_cast<int>(nbreak));
// fix the first and last parameters to the first and last data values
spline->setParameter(0, Y.front());
spline->fix(0);
size_t lastParamIndex = spline->nParams() - 1;
spline->setParameter(lastParamIndex, Y.back());
spline->fix(lastParamIndex);
// fit the spline to the data
auto fit = createChildAlgorithm("Fit");
fit->initialize();
fit->setProperty("Function", spline);
fit->setProperty("InputWorkspace", inputWS);
fit->setProperty("WorkspaceIndex", static_cast<int>(wsIndex));
fit->setProperty("CreateOutput", true);
fit->execute();
// get the fit output workspace; spectrum 2 contains the difference that is to
// be smoothed
API::MatrixWorkspace_sptr fitOut = fit->getProperty("OutputWorkspace");
// Fourier transform the difference spectrum
auto fourier = createChildAlgorithm("RealFFT");
fourier->initialize();
fourier->setProperty("InputWorkspace", fitOut);
fourier->setProperty("WorkspaceIndex", 2);
// we don't require bin linearity as we don't need the exact transform
fourier->setProperty("IgnoreXBins", true);
fourier->execute();
API::MatrixWorkspace_sptr fourierOut =
fourier->getProperty("OutputWorkspace");
// spectrum 2 of the transformed workspace has the transform modulus which is
// a square
//.........这里部分代码省略.........