当前位置: 首页>>代码示例>>C++>>正文


C++ UARTDriver::begin方法代码示例

本文整理汇总了C++中ap_hal::UARTDriver::begin方法的典型用法代码示例。如果您正苦于以下问题:C++ UARTDriver::begin方法的具体用法?C++ UARTDriver::begin怎么用?C++ UARTDriver::begin使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ap_hal::UARTDriver的用法示例。


在下文中一共展示了UARTDriver::begin方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: begin

/*
  setup a UART, handling begin() and init()
 */
void
GCS_MAVLINK::setup_uart(const AP_SerialManager& serial_manager, AP_SerialManager::SerialProtocol protocol, uint8_t instance)
{
    // search for serial port

    AP_HAL::UARTDriver *uart;
    uart = serial_manager.find_serial(protocol, instance);
    if (uart == NULL) {
        // return immediately if not found
        return;
    }

    // get associated mavlink channel
    mavlink_channel_t mav_chan;
    if (!serial_manager.get_mavlink_channel(protocol, instance, mav_chan)) {
        // return immediately in unlikely case mavlink channel cannot be found
        return;
    }

    /*
      Now try to cope with SiK radios that may be stuck in bootloader
      mode because CTS was held while powering on. This tells the
      bootloader to wait for a firmware. It affects any SiK radio with
      CTS connected that is externally powered. To cope we send 0x30
      0x20 at 115200 on startup, which tells the bootloader to reset
      and boot normally
     */
    uart->begin(115200);
    AP_HAL::UARTDriver::flow_control old_flow_control = uart->get_flow_control();
    uart->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
    for (uint8_t i=0; i<3; i++) {
        hal.scheduler->delay(1);
        uart->write(0x30);
        uart->write(0x20);
    }
    // since tcdrain() and TCSADRAIN may not be implemented...
    hal.scheduler->delay(1);
    
    uart->set_flow_control(old_flow_control);

    // now change back to desired baudrate
    uart->begin(serial_manager.find_baudrate(protocol, instance));

    // and init the gcs instance
    init(uart, mav_chan);
}
开发者ID:radiohail,项目名称:ardupilot,代码行数:49,代码来源:GCS_Common.cpp

示例2: if

/*
  run detection step for one GPS instance. If this finds a GPS then it
  will fill in drivers[instance] and change state[instance].status
  from NO_GPS to NO_FIX.
 */
void
AP_GPS::detect_instance(uint8_t instance)
{
    AP_GPS_Backend *new_gps = NULL;
    AP_HAL::UARTDriver *port = instance==0?hal.uartB:hal.uartE;
    struct detect_state *dstate = &detect_state[instance];

    if (port == NULL) {
        // UART not available
        return;
    }

    uint32_t now = hal.scheduler->millis();

    state[instance].instance = instance;
    state[instance].status = NO_GPS;

    // record the time when we started detection. This is used to try
    // to avoid initialising a uBlox as a NMEA GPS
    if (dstate->detect_started_ms == 0) {
        dstate->detect_started_ms = now;
    }

    if (now - dstate->last_baud_change_ms > 1200) {
        // try the next baud rate
		dstate->last_baud++;
		if (dstate->last_baud == sizeof(_baudrates) / sizeof(_baudrates[0])) {
			dstate->last_baud = 0;
		}
		uint32_t baudrate = pgm_read_dword(&_baudrates[dstate->last_baud]);
		port->begin(baudrate, 256, 16);		
		dstate->last_baud_change_ms = now;
        send_blob_start(instance, _initialisation_blob, sizeof(_initialisation_blob));
    }

    send_blob_update(instance);

    while (port->available() > 0 && new_gps == NULL) {
        uint8_t data = port->read();
        /*
          running a uBlox at less than 38400 will lead to packet
          corruption, as we can't receive the packets in the 200ms
          window for 5Hz fixes. The NMEA startup message should force
          the uBlox into 38400 no matter what rate it is configured
          for.
        */
        if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_UBLOX) &&
            pgm_read_dword(&_baudrates[dstate->last_baud]) >= 38400 && 
            AP_GPS_UBLOX::_detect(dstate->ublox_detect_state, data)) {
            hal.console->print_P(PSTR(" ublox "));
            new_gps = new AP_GPS_UBLOX(*this, state[instance], port);
        } 
		else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_MTK19) &&
                 AP_GPS_MTK19::_detect(dstate->mtk19_detect_state, data)) {
			hal.console->print_P(PSTR(" MTK19 "));
			new_gps = new AP_GPS_MTK19(*this, state[instance], port);
		} 
		else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_MTK) &&
                 AP_GPS_MTK::_detect(dstate->mtk_detect_state, data)) {
			hal.console->print_P(PSTR(" MTK "));
			new_gps = new AP_GPS_MTK(*this, state[instance], port);
		}
#if GPS_RTK_AVAILABLE
        else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_SBP) &&
                 AP_GPS_SBP::_detect(dstate->sbp_detect_state, data)) {
            hal.console->print_P(PSTR(" SBP "));
            new_gps = new AP_GPS_SBP(*this, state[instance], port);
        }
#endif // HAL_CPU_CLASS
#if !defined( __AVR_ATmega1280__ )
		// save a bit of code space on a 1280
		else if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_SIRF) &&
                 AP_GPS_SIRF::_detect(dstate->sirf_detect_state, data)) {
			hal.console->print_P(PSTR(" SIRF "));
			new_gps = new AP_GPS_SIRF(*this, state[instance], port);
		}
		else if (now - dstate->detect_started_ms > 5000) {
			// prevent false detection of NMEA mode in
			// a MTK or UBLOX which has booted in NMEA mode
			if ((_type[instance] == GPS_TYPE_AUTO || _type[instance] == GPS_TYPE_NMEA) &&
                AP_GPS_NMEA::_detect(dstate->nmea_detect_state, data)) {
				hal.console->print_P(PSTR(" NMEA "));
				new_gps = new AP_GPS_NMEA(*this, state[instance], port);
			}
		}
#endif
	}

	if (new_gps != NULL) {
        state[instance].status = NO_FIX;
        drivers[instance] = new_gps;
        timing[instance].last_message_time_ms = now;
	}
}
开发者ID:AdiKulkarni,项目名称:ardupilot,代码行数:99,代码来源:AP_GPS.cpp

示例3: handle_serial_control

/**
   handle a SERIAL_CONTROL message
 */
void GCS_MAVLINK::handle_serial_control(mavlink_message_t *msg, AP_GPS &gps)
{
    mavlink_serial_control_t packet;
    mavlink_msg_serial_control_decode(msg, &packet);

    AP_HAL::UARTDriver *port = NULL;

    if (packet.flags & SERIAL_CONTROL_FLAG_REPLY) {
        // how did this packet get to us?
        return;
    }

    bool exclusive = (packet.flags & SERIAL_CONTROL_FLAG_EXCLUSIVE) != 0;

    switch (packet.device) {
    case SERIAL_CONTROL_DEV_TELEM1:
        port = hal.uartC;
        lock_channel(MAVLINK_COMM_1, exclusive);
        break;
    case SERIAL_CONTROL_DEV_TELEM2:
        port = hal.uartD;
        lock_channel(MAVLINK_COMM_2, exclusive);
        break;
    case SERIAL_CONTROL_DEV_GPS1:
        port = hal.uartB;
        gps.lock_port(0, exclusive);
        break;
    case SERIAL_CONTROL_DEV_GPS2:
        port = hal.uartE;
        gps.lock_port(1, exclusive);
        break;
    default:
        // not supported yet
        return;
    }

    if (exclusive) {
        // force flow control off for exclusive access. This protocol
        // is used to talk to bootloaders which may not have flow
        // control support
        port->set_flow_control(AP_HAL::UARTDriver::FLOW_CONTROL_DISABLE);
    }

    // optionally change the baudrate
    if (packet.baudrate != 0) {
        port->begin(packet.baudrate);
    }

    // write the data
    if (packet.count != 0) {
        if ((packet.flags & SERIAL_CONTROL_FLAG_BLOCKING) == 0) {
            port->write(packet.data, packet.count);
        } else {
            const uint8_t *data = &packet.data[0];
            uint8_t count = packet.count;
            while (count > 0) {
                while (port->txspace() <= 0) {
                    hal.scheduler->delay(5);
                }
                uint16_t n = port->txspace();
                if (n > packet.count) {
                    n = packet.count;
                }
                port->write(data, n);
                data += n;
                count -= n;
            }
        }
    }

    if ((packet.flags & SERIAL_CONTROL_FLAG_RESPOND) == 0) {
        // no response expected
        return;
    }

    uint8_t flags = packet.flags;

more_data:
    // sleep for the timeout
    while (packet.timeout != 0 &&
            port->available() < (int16_t)sizeof(packet.data)) {
        hal.scheduler->delay(1);
        packet.timeout--;
    }

    packet.flags = SERIAL_CONTROL_FLAG_REPLY;

    // work out how many bytes are available
    int16_t available = port->available();
    if (available < 0) {
        available = 0;
    }
    if (available > (int16_t)sizeof(packet.data)) {
        available = sizeof(packet.data);
    }

    // read any reply data
//.........这里部分代码省略.........
开发者ID:bluerobotics,项目名称:ardupilot-bluerov-apm,代码行数:101,代码来源:GCS_serial_control.cpp


注:本文中的ap_hal::UARTDriver::begin方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。