本文整理汇总了C++中ap::real_2d_array类的典型用法代码示例。如果您正苦于以下问题:C++ real_2d_array类的具体用法?C++ real_2d_array怎么用?C++ real_2d_array使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了real_2d_array类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: in_out_variable
bool in_out_variable(const ap::boolean_1d_array& in, const ap::real_2d_array& X, ap::real_2d_array& x, bool io)
{
//////////////////////////////////////////////////////////////////
// Section: Define variables
int rows = in.gethighbound(0) + 1;
bool flag;
vector<int> stdVector;
//////////////////////////////////////////////////////////////////
// Section: Identify how many variables are in or out
for (int i=0; i<rows; i++)
{
if (in(i)==io)
stdVector.push_back(i);
}
if (stdVector.size()>0)
{
// Routine to extract the in/out variables
x.setbounds(0,X.gethighbound(1),0,static_cast<int>(stdVector.size())-1);
for (size_t i=0; i<stdVector.size(); i++)
ap::vmove(x.getcolumn(static_cast<int>(i),0,X.gethighbound(1)), X.getcolumn(stdVector[i],0,X.gethighbound(1)));
flag=TRUE;
}
else
flag=FALSE;
return flag;
}
示例2: unpackqfromqr
void unpackqfromqr(const ap::real_2d_array& a,
int m,
int n,
const ap::real_1d_array& tau,
int qcolumns,
ap::real_2d_array& q)
{
int i;
int j;
int k;
int minmn;
ap::real_1d_array v;
ap::real_1d_array work;
int vm;
ap::ap_error::make_assertion(qcolumns<=m, "UnpackQFromQR: QColumns>M!");
if( m==0||n==0||qcolumns==0 )
{
return;
}
//
// init
//
minmn = ap::minint(m, n);
k = ap::minint(minmn, qcolumns);
q.setbounds(1, m, 1, qcolumns);
v.setbounds(1, m);
work.setbounds(1, qcolumns);
for(i = 1; i <= m; i++)
{
for(j = 1; j <= qcolumns; j++)
{
if( i==j )
{
q(i,j) = 1;
}
else
{
q(i,j) = 0;
}
}
}
//
// unpack Q
//
for(i = k; i >= 1; i--)
{
//
// Apply H(i)
//
vm = m-i+1;
ap::vmove(v.getvector(1, vm), a.getcolumn(i, i, m));
v(1) = 1;
applyreflectionfromtheleft(q, tau(i), v, i, m, 1, qcolumns, work);
}
}
示例3: ludecompositionunpacked
/*************************************************************************
LU-разложение матрицы общего вида размера M x N
Использует LUDecomposition. По функциональности отличается тем, что
выводит матрицы L и U не в компактной форме, а в виде отдельных матриц
общего вида, заполненных в соответствующих местах нулевыми элементами.
Подпрограмма приведена исключительно для демонстрации того, как
"распаковывается" результат работы подпрограммы LUDecomposition
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void ludecompositionunpacked(ap::real_2d_array a,
int m,
int n,
ap::real_2d_array& l,
ap::real_2d_array& u,
ap::integer_1d_array& pivots)
{
int i;
int j;
int minmn;
if( m==0||n==0 )
{
return;
}
minmn = ap::minint(m, n);
l.setbounds(1, m, 1, minmn);
u.setbounds(1, minmn, 1, n);
ludecomposition(a, m, n, pivots);
for(i = 1; i <= m; i++)
{
for(j = 1; j <= minmn; j++)
{
if( j>i )
{
l(i,j) = 0;
}
if( j==i )
{
l(i,j) = 1;
}
if( j<i )
{
l(i,j) = a(i,j);
}
}
}
for(i = 1; i <= minmn; i++)
{
for(j = 1; j <= n; j++)
{
if( j<i )
{
u(i,j) = 0;
}
if( j>=i )
{
u(i,j) = a(i,j);
}
}
}
}
示例4: qrdecompositionunpacked
void qrdecompositionunpacked(ap::real_2d_array a,
int m,
int n,
ap::real_2d_array& q,
ap::real_2d_array& r)
{
int i;
int k;
ap::real_1d_array tau;
ap::real_1d_array work;
ap::real_1d_array v;
k = ap::minint(m, n);
if( n<=0 )
{
return;
}
work.setbounds(1, m);
v.setbounds(1, m);
q.setbounds(1, m, 1, m);
r.setbounds(1, m, 1, n);
//
// QRDecomposition
//
qrdecomposition(a, m, n, tau);
//
// R
//
for(i = 1; i <= n; i++)
{
r(1,i) = 0;
}
for(i = 2; i <= m; i++)
{
ap::vmove(&r(i, 1), &r(1, 1), ap::vlen(1,n));
}
for(i = 1; i <= k; i++)
{
ap::vmove(&r(i, i), &a(i, i), ap::vlen(i,n));
}
//
// Q
//
unpackqfromqr(a, m, n, tau, m, q);
}
示例5: rmatrixqrunpackr
/*************************************************************************
Unpacking of matrix R from the QR decomposition of a matrix A
Input parameters:
A - matrices Q and R in compact form.
Output of RMatrixQR subroutine.
M - number of rows in given matrix A. M>=0.
N - number of columns in given matrix A. N>=0.
Output parameters:
R - matrix R, array[0..M-1, 0..N-1].
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixqrunpackr(const ap::real_2d_array& a,
int m,
int n,
ap::real_2d_array& r)
{
int i;
int k;
if( m<=0||n<=0 )
{
return;
}
k = ap::minint(m, n);
r.setbounds(0, m-1, 0, n-1);
for(i = 0; i <= n-1; i++)
{
r(0,i) = 0;
}
for(i = 1; i <= m-1; i++)
{
ap::vmove(&r(i, 0), &r(0, 0), ap::vlen(0,n-1));
}
for(i = 0; i <= k-1; i++)
{
ap::vmove(&r(i, i), &a(i, i), ap::vlen(i,n-1));
}
}
示例6: qrdecomposition
void qrdecomposition(ap::real_2d_array& a,
int m,
int n,
ap::real_1d_array& tau)
{
ap::real_1d_array work;
ap::real_1d_array t;
int i;
int k;
int mmip1;
int minmn;
double tmp;
minmn = ap::minint(m, n);
work.setbounds(1, n);
t.setbounds(1, m);
tau.setbounds(1, minmn);
//
// Test the input arguments
//
k = ap::minint(m, n);
for(i = 1; i <= k; i++)
{
//
// Generate elementary reflector H(i) to annihilate A(i+1:m,i)
//
mmip1 = m-i+1;
ap::vmove(t.getvector(1, mmip1), a.getcolumn(i, i, m));
generatereflection(t, mmip1, tmp);
tau(i) = tmp;
ap::vmove(a.getcolumn(i, i, m), t.getvector(1, mmip1));
t(1) = 1;
if( i<n )
{
//
// Apply H(i) to A(i:m,i+1:n) from the left
//
applyreflectionfromtheleft(a, tau(i), t, i, m, i+1, n, work);
}
}
}
示例7: form
/*************************************************************************
QR decomposition of a rectangular matrix of size MxN
Input parameters:
A - matrix A whose indexes range within [0..M-1, 0..N-1].
M - number of rows in matrix A.
N - number of columns in matrix A.
Output parameters:
A - matrices Q and R in compact form (see below).
Tau - array of scalar factors which are used to form
matrix Q. Array whose index ranges within [0.. Min(M-1,N-1)].
Matrix A is represented as A = QR, where Q is an orthogonal matrix of size
MxM, R - upper triangular (or upper trapezoid) matrix of size M x N.
The elements of matrix R are located on and above the main diagonal of
matrix A. The elements which are located in Tau array and below the main
diagonal of matrix A are used to form matrix Q as follows:
Matrix Q is represented as a product of elementary reflections
Q = H(0)*H(2)*...*H(k-1),
where k = min(m,n), and each H(i) is in the form
H(i) = 1 - tau * v * (v^T)
where tau is a scalar stored in Tau[I]; v - real vector,
so that v(0:i-1) = 0, v(i) = 1, v(i+1:m-1) stored in A(i+1:m-1,i).
-- LAPACK routine (version 3.0) --
Univ. of Tennessee, Univ. of California Berkeley, NAG Ltd.,
Courant Institute, Argonne National Lab, and Rice University
February 29, 1992.
Translation from FORTRAN to pseudocode (AlgoPascal)
by Sergey Bochkanov, ALGLIB project, 2005-2007.
*************************************************************************/
void rmatrixqr(ap::real_2d_array& a, int m, int n, ap::real_1d_array& tau)
{
ap::real_1d_array work;
ap::real_1d_array t;
int i;
int k;
int minmn;
double tmp;
if( m<=0||n<=0 )
{
return;
}
minmn = ap::minint(m, n);
work.setbounds(0, n-1);
t.setbounds(1, m);
tau.setbounds(0, minmn-1);
//
// Test the input arguments
//
k = minmn;
for(i = 0; i <= k-1; i++)
{
//
// Generate elementary reflector H(i) to annihilate A(i+1:m,i)
//
ap::vmove(t.getvector(1, m-i), a.getcolumn(i, i, m-1));
generatereflection(t, m-i, tmp);
tau(i) = tmp;
ap::vmove(a.getcolumn(i, i, m-1), t.getvector(1, m-i));
t(1) = 1;
if( i<n )
{
//
// Apply H(i) to A(i:m-1,i+1:n-1) from the left
//
applyreflectionfromtheleft(a, tau(i), t, i, m-1, i+1, n-1, work);
}
}
}
示例8: shermanmorrisonupdaterow
/*************************************************************************
Obsolete 1-based subroutine
*************************************************************************/
void shermanmorrisonupdaterow(ap::real_2d_array& inva,
int n,
int updrow,
const ap::real_1d_array& v)
{
ap::real_1d_array t1;
ap::real_1d_array t2;
int i;
int j;
double lambda;
double vt;
t1.setbounds(1, n);
t2.setbounds(1, n);
//
// T1 = InvA * U
//
ap::vmove(t1.getvector(1, n), inva.getcolumn(updrow, 1, n));
//
// T2 = v*InvA
// Lambda = v * InvA * U
//
for(j = 1; j <= n; j++)
{
vt = ap::vdotproduct(v.getvector(1, n), inva.getcolumn(j, 1, n));
t2(j) = vt;
}
lambda = t2(updrow);
//
// InvA = InvA - correction
//
for(i = 1; i <= n; i++)
{
vt = t1(i)/(1+lambda);
ap::vsub(&inva(i, 1), &t2(1), ap::vlen(1,n), vt);
}
}
示例9: rmatrixinvupdaterow
/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula
The algorithm updates matrix A^-1 when adding a vector to a row
of matrix A.
Input parameters:
InvA - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
UpdRow - the row of A whose vector V was added.
0 <= Row <= N-1
V - the vector to be added to a row.
Array whose index ranges within [0..N-1].
Output parameters:
InvA - inverse of modified matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdaterow(ap::real_2d_array& inva,
int n,
int updrow,
const ap::real_1d_array& v)
{
ap::real_1d_array t1;
ap::real_1d_array t2;
int i;
int j;
double lambda;
double vt;
t1.setbounds(0, n-1);
t2.setbounds(0, n-1);
//
// T1 = InvA * U
//
ap::vmove(t1.getvector(0, n-1), inva.getcolumn(updrow, 0, n-1));
//
// T2 = v*InvA
// Lambda = v * InvA * U
//
for(j = 0; j <= n-1; j++)
{
vt = ap::vdotproduct(v.getvector(0, n-1), inva.getcolumn(j, 0, n-1));
t2(j) = vt;
}
lambda = t2(updrow);
//
// InvA = InvA - correction
//
for(i = 0; i <= n-1; i++)
{
vt = t1(i)/(1+lambda);
ap::vsub(&inva(i, 0), &t2(0), ap::vlen(0,n-1), vt);
}
}
示例10: diag
/*************************************************************************
Tests Z*Z' against diag(1...1)
Returns absolute error.
*************************************************************************/
static double testort(const ap::real_2d_array& z, int n)
{
double result;
int i;
int j;
double v;
result = 0;
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
v = ap::vdotproduct(z.getcolumn(i, 0, n-1), z.getcolumn(j, 0, n-1));
if( i==j )
{
v = v-1;
}
result = ap::maxreal(result, fabs(v));
}
}
return result;
}
示例11: C
/*************************************************************************
Generate matrix with given condition number C (2-norm)
*************************************************************************/
static void rmatrixgenzero(ap::real_2d_array& a0, int n)
{
int i;
int j;
a0.setlength(n, n);
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
a0(i,j) = 0;
}
}
}
示例12: rmatrixmakeacopy
/*************************************************************************
Copy
*************************************************************************/
static void rmatrixmakeacopy(const ap::real_2d_array& a,
int m,
int n,
ap::real_2d_array& b)
{
int i;
int j;
b.setbounds(0, m-1, 0, n-1);
for(i = 0; i <= m-1; i++)
{
for(j = 0; j <= n-1; j++)
{
b(i,j) = a(i,j);
}
}
}
示例13: norm2
/*************************************************************************
Generation of random NxN symmetric positive definite matrix with given
condition number and norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random SPD matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void spdmatrixrndcond(int n, double c, ap::real_2d_array& a)
{
int i;
int j;
double l1;
double l2;
//
// Special cases
//
if( n<=0||ap::fp_less(c,1) )
{
return;
}
a.setbounds(0, n-1, 0, n-1);
if( n==1 )
{
a(0,0) = 1;
return;
}
//
// Prepare matrix
//
l1 = 0;
l2 = log(1/c);
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
a(i,j) = 0;
}
}
a(0,0) = exp(l1);
for(i = 1; i <= n-2; i++)
{
a(i,i) = exp(ap::randomreal()*(l2-l1)+l1);
}
a(n-1,n-1) = exp(l2);
//
// Multiply
//
smatrixrndmultiply(a, n);
}
示例14: rmatrixinvupdatesimple
/*************************************************************************
Inverse matrix update by the Sherman-Morrison formula
The algorithm updates matrix A^-1 when adding a number to an element
of matrix A.
Input parameters:
InvA - inverse of matrix A.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
UpdRow - row where the element to be updated is stored.
UpdColumn - column where the element to be updated is stored.
UpdVal - a number to be added to the element.
Output parameters:
InvA - inverse of modified matrix A.
-- ALGLIB --
Copyright 2005 by Bochkanov Sergey
*************************************************************************/
void rmatrixinvupdatesimple(ap::real_2d_array& inva,
int n,
int updrow,
int updcolumn,
double updval)
{
ap::real_1d_array t1;
ap::real_1d_array t2;
int i;
int j;
double lambda;
double vt;
ap::ap_error::make_assertion(updrow>=0&&updrow<n, "RMatrixInvUpdateSimple: incorrect UpdRow!");
ap::ap_error::make_assertion(updcolumn>=0&&updcolumn<n, "RMatrixInvUpdateSimple: incorrect UpdColumn!");
t1.setbounds(0, n-1);
t2.setbounds(0, n-1);
//
// T1 = InvA * U
//
ap::vmove(t1.getvector(0, n-1), inva.getcolumn(updrow, 0, n-1));
//
// T2 = v*InvA
//
ap::vmove(&t2(0), &inva(updcolumn, 0), ap::vlen(0,n-1));
//
// Lambda = v * InvA * U
//
lambda = updval*inva(updcolumn,updrow);
//
// InvA = InvA - correction
//
for(i = 0; i <= n-1; i++)
{
vt = updval*t1(i);
vt = vt/(1+lambda);
ap::vsub(&inva(i, 0), &t2(0), ap::vlen(0,n-1), vt);
}
}
示例15: mheapresize
static void mheapresize(ap::real_2d_array& heap,
int& heapsize,
int newheapsize,
int heapwidth)
{
ap::real_2d_array tmp;
int i;
tmp.setlength(heapsize, heapwidth);
for(i = 0; i <= heapsize-1; i++)
{
ap::vmove(&tmp(i, 0), &heap(i, 0), ap::vlen(0,heapwidth-1));
}
heap.setlength(newheapsize, heapwidth);
for(i = 0; i <= heapsize-1; i++)
{
ap::vmove(&heap(i, 0), &tmp(i, 0), ap::vlen(0,heapwidth-1));
}
heapsize = newheapsize;
}