本文整理汇总了C++中ap::complex_2d_array类的典型用法代码示例。如果您正苦于以下问题:C++ complex_2d_array类的具体用法?C++ complex_2d_array怎么用?C++ complex_2d_array使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了complex_2d_array类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: complexludecompositionunpacked
void complexludecompositionunpacked(ap::complex_2d_array a,
int m,
int n,
ap::complex_2d_array& l,
ap::complex_2d_array& u,
ap::integer_1d_array& pivots)
{
int i;
int j;
int minmn;
if( m==0||n==0 )
{
return;
}
minmn = ap::minint(m, n);
l.setbounds(1, m, 1, minmn);
u.setbounds(1, minmn, 1, n);
complexludecomposition(a, m, n, pivots);
for(i = 1; i <= m; i++)
{
for(j = 1; j <= minmn; j++)
{
if( j>i )
{
l(i,j) = 0;
}
if( j==i )
{
l(i,j) = 1;
}
if( j<i )
{
l(i,j) = a(i,j);
}
}
}
for(i = 1; i <= minmn; i++)
{
for(j = 1; j <= n; j++)
{
if( j<i )
{
u(i,j) = 0;
}
if( j>=i )
{
u(i,j) = a(i,j);
}
}
}
}
示例2:
/********************************************************************
complex rank-1 kernel
********************************************************************/
bool ialglib::_i_cmatrixrank1f(int m,
int n,
ap::complex_2d_array& a,
int ia,
int ja,
ap::complex_1d_array& u,
int uoffs,
ap::complex_1d_array& v,
int voffs)
{
ap::complex *arow, *pu, *pv, *vtmp, *dst;
int n2 = n/2;
int stride = a.getstride();
int i, j;
//
// update pairs of rows
//
arow = &a(ia,ja);
pu = &u(uoffs);
vtmp = &v(voffs);
for(i=0; i<m; i++, arow+=stride, pu++)
{
//
// update by two
//
for(j=0,pv=vtmp, dst=arow; j<n2; j++, dst+=2, pv+=2)
{
double ux = pu[0].x;
double uy = pu[0].y;
double v0x = pv[0].x;
double v0y = pv[0].y;
double v1x = pv[1].x;
double v1y = pv[1].y;
dst[0].x += ux*v0x-uy*v0y;
dst[0].y += ux*v0y+uy*v0x;
dst[1].x += ux*v1x-uy*v1y;
dst[1].y += ux*v1y+uy*v1x;
//dst[0] += pu[0]*pv[0];
//dst[1] += pu[0]*pv[1];
}
//
// final update
//
if( n%2!=0 )
dst[0] += pu[0]*pv[0];
}
return true;
}
示例3: C
/*************************************************************************
Generate matrix with given condition number C (2-norm)
*************************************************************************/
static void cmatrixgenzero(ap::complex_2d_array& a0, int n)
{
int i;
int j;
a0.setlength(n, n);
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
a0(i,j) = 0;
}
}
}
示例4: norm2
/*************************************************************************
Generation of random NxN Hermitian positive definite matrix with given
condition number and norm2(A)=1
INPUT PARAMETERS:
N - matrix size
C - condition number (in 2-norm)
OUTPUT PARAMETERS:
A - random HPD matrix with norm2(A)=1 and cond(A)=C
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void hpdmatrixrndcond(int n, double c, ap::complex_2d_array& a)
{
int i;
int j;
double l1;
double l2;
//
// Special cases
//
if( n<=0||ap::fp_less(c,1) )
{
return;
}
a.setbounds(0, n-1, 0, n-1);
if( n==1 )
{
a(0,0) = 1;
return;
}
//
// Prepare matrix
//
l1 = 0;
l2 = log(1/c);
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
a(i,j) = 0;
}
}
a(0,0) = exp(l1);
for(i = 1; i <= n-2; i++)
{
a(i,i) = exp(ap::randomreal()*(l2-l1)+l1);
}
a(n-1,n-1) = exp(l2);
//
// Multiply
//
hmatrixrndmultiply(a, n);
}
示例5: makeacopy
/*************************************************************************
Copy
*************************************************************************/
static void makeacopy(const ap::complex_2d_array& a,
int m,
int n,
ap::complex_2d_array& b)
{
int i;
int j;
b.setbounds(0, m-1, 0, n-1);
for(i = 0; i <= m-1; i++)
{
for(j = 0; j <= n-1; j++)
{
b(i,j) = a(i,j);
}
}
}
示例6: cmatrixrndorthogonal
/*************************************************************************
Generation of a random Haar distributed orthogonal complex matrix
INPUT PARAMETERS:
N - matrix size, N>=1
OUTPUT PARAMETERS:
A - orthogonal NxN matrix, array[0..N-1,0..N-1]
-- ALGLIB routine --
04.12.2009
Bochkanov Sergey
*************************************************************************/
void cmatrixrndorthogonal(int n, ap::complex_2d_array& a)
{
int i;
int j;
ap::ap_error::make_assertion(n>=1, "CMatrixRndOrthogonal: N<1!");
a.setbounds(0, n-1, 0, n-1);
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
if( i==j )
{
a(i,j) = 1;
}
else
{
a(i,j) = 0;
}
}
}
cmatrixrndorthogonalfromtheright(a, n, n);
}
示例7: converged
/*************************************************************************
Finding the eigenvalues and eigenvectors of a Hermitian matrix
The algorithm finds eigen pairs of a Hermitian matrix by reducing it to
real tridiagonal form and using the QL/QR algorithm.
Input parameters:
A - Hermitian matrix which is given by its upper or lower
triangular part.
Array whose indexes range within [0..N-1, 0..N-1].
N - size of matrix A.
IsUpper - storage format.
ZNeeded - flag controlling whether the eigenvectors are needed or
not. If ZNeeded is equal to:
* 0, the eigenvectors are not returned;
* 1, the eigenvectors are returned.
Output parameters:
D - eigenvalues in ascending order.
Array whose index ranges within [0..N-1].
Z - if ZNeeded is equal to:
* 0, Z hasn’t changed;
* 1, Z contains the eigenvectors.
Array whose indexes range within [0..N-1, 0..N-1].
The eigenvectors are stored in the matrix columns.
Result:
True, if the algorithm has converged.
False, if the algorithm hasn't converged (rare case).
Note:
eigen vectors of Hermitian matrix are defined up to multiplication by
a complex number L, such as |L|=1.
-- ALGLIB --
Copyright 2005, 23 March 2007 by Bochkanov Sergey
*************************************************************************/
bool hmatrixevd(ap::complex_2d_array a,
int n,
int zneeded,
bool isupper,
ap::real_1d_array& d,
ap::complex_2d_array& z)
{
bool result;
ap::complex_1d_array tau;
ap::real_1d_array e;
ap::real_1d_array work;
ap::real_2d_array t;
ap::complex_2d_array q;
int i;
int k;
double v;
ap::ap_error::make_assertion(zneeded==0||zneeded==1, "HermitianEVD: incorrect ZNeeded");
//
// Reduce to tridiagonal form
//
hmatrixtd(a, n, isupper, tau, d, e);
if( zneeded==1 )
{
hmatrixtdunpackq(a, n, isupper, tau, q);
zneeded = 2;
}
//
// TDEVD
//
result = smatrixtdevd(d, e, n, zneeded, t);
//
// Eigenvectors are needed
// Calculate Z = Q*T = Re(Q)*T + i*Im(Q)*T
//
if( result&&zneeded!=0 )
{
work.setbounds(0, n-1);
z.setbounds(0, n-1, 0, n-1);
for(i = 0; i <= n-1; i++)
{
//
// Calculate real part
//
for(k = 0; k <= n-1; k++)
{
work(k) = 0;
}
for(k = 0; k <= n-1; k++)
{
v = q(i,k).x;
ap::vadd(&work(0), &t(k, 0), ap::vlen(0,n-1), v);
}
for(k = 0; k <= n-1; k++)
{
z(i,k).x = work(k);
}
//
//.........这里部分代码省略.........
示例8: cmatrixinvmatlu
/*************************************************************************
LU inverse
*************************************************************************/
static bool cmatrixinvmatlu(ap::complex_2d_array& a,
const ap::integer_1d_array& pivots,
int n)
{
bool result;
ap::complex_1d_array work;
int i;
int iws;
int j;
int jb;
int jj;
int jp;
ap::complex v;
result = true;
//
// Quick return if possible
//
if( n==0 )
{
return result;
}
work.setbounds(0, n-1);
//
// Form inv(U)
//
if( !cmatrixinvmattr(a, n, true, false) )
{
result = false;
return result;
}
//
// Solve the equation inv(A)*L = inv(U) for inv(A).
//
for(j = n-1; j >= 0; j--)
{
//
// Copy current column of L to WORK and replace with zeros.
//
for(i = j+1; i <= n-1; i++)
{
work(i) = a(i,j);
a(i,j) = 0;
}
//
// Compute current column of inv(A).
//
if( j<n-1 )
{
for(i = 0; i <= n-1; i++)
{
v = ap::vdotproduct(&a(i, j+1), 1, "N", &work(j+1), 1, "N", ap::vlen(j+1,n-1));
a(i,j) = a(i,j)-v;
}
}
}
//
// Apply column interchanges.
//
for(j = n-2; j >= 0; j--)
{
jp = pivots(j);
if( jp!=j )
{
ap::vmove(&work(0), 1, &a(0, j), a.getstride(), "N", ap::vlen(0,n-1));
ap::vmove(&a(0, j), a.getstride(), &a(0, jp), a.getstride(), "N", ap::vlen(0,n-1));
ap::vmove(&a(0, jp), a.getstride(), &work(0), 1, "N", ap::vlen(0,n-1));
}
}
return result;
}
示例9: unset2dc
/*************************************************************************
Unsets 2D array.
*************************************************************************/
static void unset2dc(ap::complex_2d_array& a)
{
a.setbounds(0, 0, 0, 0);
a(0,0) = 2*ap::randomreal()-1;
}
示例10: format
/*************************************************************************
Unpacking matrix Q which reduces a Hermitian matrix to a real tridiagonal
form.
Input parameters:
A - the result of a HMatrixTD subroutine
N - size of matrix A.
IsUpper - storage format (a parameter of HMatrixTD subroutine)
Tau - the result of a HMatrixTD subroutine
Output parameters:
Q - transformation matrix.
array with elements [0..N-1, 0..N-1].
-- ALGLIB --
Copyright 2005, 2007, 2008 by Bochkanov Sergey
*************************************************************************/
void hmatrixtdunpackq(const ap::complex_2d_array& a,
const int& n,
const bool& isupper,
const ap::complex_1d_array& tau,
ap::complex_2d_array& q)
{
int i;
int j;
ap::complex_1d_array v;
ap::complex_1d_array work;
int i_;
int i1_;
if( n==0 )
{
return;
}
//
// init
//
q.setbounds(0, n-1, 0, n-1);
v.setbounds(1, n);
work.setbounds(0, n-1);
for(i = 0; i <= n-1; i++)
{
for(j = 0; j <= n-1; j++)
{
if( i==j )
{
q(i,j) = 1;
}
else
{
q(i,j) = 0;
}
}
}
//
// unpack Q
//
if( isupper )
{
for(i = 0; i <= n-2; i++)
{
//
// Apply H(i)
//
i1_ = (0) - (1);
for(i_=1; i_<=i+1;i_++)
{
v(i_) = a(i_+i1_,i+1);
}
v(i+1) = 1;
complexapplyreflectionfromtheleft(q, tau(i), v, 0, i, 0, n-1, work);
}
}
else
{
for(i = n-2; i >= 0; i--)
{
//
// Apply H(i)
//
i1_ = (i+1) - (1);
for(i_=1; i_<=n-i-1;i_++)
{
v(i_) = a(i_+i1_,i);
}
v(1) = 1;
complexapplyreflectionfromtheleft(q, tau(i), v, i+1, n-1, 0, n-1, work);
}
}
}
示例11: cmatrixinvmattr
/*************************************************************************
triangular inverse
*************************************************************************/
static bool cmatrixinvmattr(ap::complex_2d_array& a,
int n,
bool isupper,
bool isunittriangular)
{
bool result;
bool nounit;
int i;
int j;
ap::complex v;
ap::complex ajj;
ap::complex_1d_array t;
result = true;
t.setbounds(0, n-1);
//
// Test the input parameters.
//
nounit = !isunittriangular;
if( isupper )
{
//
// Compute inverse of upper triangular matrix.
//
for(j = 0; j <= n-1; j++)
{
if( nounit )
{
if( a(j,j)==0 )
{
result = false;
return result;
}
a(j,j) = 1/a(j,j);
ajj = -a(j,j);
}
else
{
ajj = -1;
}
//
// Compute elements 1:j-1 of j-th column.
//
if( j>0 )
{
ap::vmove(&t(0), 1, &a(0, j), a.getstride(), "N", ap::vlen(0,j-1));
for(i = 0; i <= j-1; i++)
{
if( i<j-1 )
{
v = ap::vdotproduct(&a(i, i+1), 1, "N", &t(i+1), 1, "N", ap::vlen(i+1,j-1));
}
else
{
v = 0;
}
if( nounit )
{
a(i,j) = v+a(i,i)*t(i);
}
else
{
a(i,j) = v+t(i);
}
}
ap::vmul(&a(0, j), a.getstride(), ap::vlen(0,j-1), ajj);
}
}
}
else
{
//
// Compute inverse of lower triangular matrix.
//
for(j = n-1; j >= 0; j--)
{
if( nounit )
{
if( a(j,j)==0 )
{
result = false;
return result;
}
a(j,j) = 1/a(j,j);
ajj = -a(j,j);
}
else
{
ajj = -1;
}
if( j<n-1 )
{
//.........这里部分代码省略.........
示例12: _i_cmatrixrighttrsmf
/********************************************************************
complex TRSM kernel
********************************************************************/
bool ialglib::_i_cmatrixrighttrsmf(int m,
int n,
const ap::complex_2d_array& a,
int i1,
int j1,
bool isupper,
bool isunit,
int optype,
ap::complex_2d_array& x,
int i2,
int j2)
{
if( m>alglib_c_block || n>alglib_c_block )
return false;
//
// local buffers
//
double *pdiag;
int i;
double __abuf[2*alglib_c_block*alglib_c_block+alglib_simd_alignment];
double __xbuf[2*alglib_c_block*alglib_c_block+alglib_simd_alignment];
double __tmpbuf[2*alglib_c_block+alglib_simd_alignment];
double * const abuf = (double * const) alglib_align(__abuf, alglib_simd_alignment);
double * const xbuf = (double * const) alglib_align(__xbuf, alglib_simd_alignment);
double * const tmpbuf = (double * const) alglib_align(__tmpbuf,alglib_simd_alignment);
//
// Prepare
//
bool uppera;
mcopyblock_complex(n, n, &a(i1,j1), optype, a.getstride(), abuf);
mcopyblock_complex(m, n, &x(i2,j2), 0, x.getstride(), xbuf);
if( isunit )
for(i=0,pdiag=abuf; i<n; i++,pdiag+=2*(alglib_c_block+1))
{
pdiag[0] = 1.0;
pdiag[1] = 0.0;
}
if( optype==0 )
uppera = isupper;
else
uppera = !isupper;
//
// Solve Y*A^-1=X where A is upper or lower triangular
//
if( uppera )
{
for(i=0,pdiag=abuf; i<n; i++,pdiag+=2*(alglib_c_block+1))
{
ap::complex beta = 1.0/ap::complex(pdiag[0],pdiag[1]);
ap::complex alpha;
alpha.x = -beta.x;
alpha.y = -beta.y;
vcopy_complex(i, abuf+2*i, alglib_c_block, tmpbuf, 1, "No conj");
mv_complex(m, i, xbuf, tmpbuf, NULL, xbuf+2*i, alglib_c_block, alpha, beta);
}
mcopyunblock_complex(m, n, xbuf, 0, &x(i2,j2), x.getstride());
}
else
{
for(i=n-1,pdiag=abuf+2*((n-1)*alglib_c_block+(n-1)); i>=0; i--,pdiag-=2*(alglib_c_block+1))
{
ap::complex beta = 1.0/ap::complex(pdiag[0],pdiag[1]);
ap::complex alpha;
alpha.x = -beta.x;
alpha.y = -beta.y;
vcopy_complex(n-1-i, pdiag+2*alglib_c_block, alglib_c_block, tmpbuf, 1, "No conj");
mv_complex(m, n-1-i, xbuf+2*(i+1), tmpbuf, NULL, xbuf+2*i, alglib_c_block, alpha, beta);
}
mcopyunblock_complex(m, n, xbuf, 0, &x(i2,j2), x.getstride());
}
return true;
}
示例13: _i_cmatrixgemmf
/********************************************************************
complex GEMM kernel
********************************************************************/
bool ialglib::_i_cmatrixgemmf(int m,
int n,
int k,
ap::complex alpha,
const ap::complex_2d_array& _a,
int ia,
int ja,
int optypea,
const ap::complex_2d_array& _b,
int ib,
int jb,
int optypeb,
ap::complex beta,
ap::complex_2d_array& _c,
int ic,
int jc)
{
if( m>alglib_c_block || n>alglib_c_block || k>alglib_c_block )
return false;
const ap::complex *arow;
ap::complex *crow;
int i, stride, cstride;
double __abuf[2*alglib_c_block+alglib_simd_alignment];
double __b[2*alglib_c_block*alglib_c_block+alglib_simd_alignment];
double * const abuf = (double * const) alglib_align(__abuf,alglib_simd_alignment);
double * const b = (double * const) alglib_align(__b, alglib_simd_alignment);
//
// copy b
//
int brows = optypeb==0 ? k : n;
int bcols = optypeb==0 ? n : k;
if( optypeb==0 )
mcopyblock_complex(brows, bcols, &_b(ib,jb), 1, _b.getstride(), b);
if( optypeb==1 )
mcopyblock_complex(brows, bcols, &_b(ib,jb), 0, _b.getstride(), b);
if( optypeb==2 )
mcopyblock_complex(brows, bcols, &_b(ib,jb), 3, _b.getstride(), b);
//
// multiply B by A (from the right, by rows)
// and store result in C
//
arow = &_a(ia,ja);
crow = &_c(ic,jc);
stride = _a.getstride();
cstride = _c.getstride();
for(i=0; i<m; i++)
{
if( optypea==0 )
{
vcopy_complex(k, arow, 1, abuf, 1, "No conj");
arow += stride;
}
else if( optypea==1 )
{
vcopy_complex(k, arow, stride, abuf, 1, "No conj");
arow++;
}
else
{
vcopy_complex(k, arow, stride, abuf, 1, "Conj");
arow++;
}
if( beta==0 )
vzero_complex(n, crow, 1);
mv_complex(n, k, b, abuf, crow, NULL, 1, alpha, beta);
crow += cstride;
}
return true;
}
示例14: unpackqfromhermitiantridiagonal
/*************************************************************************
-- ALGLIB --
Copyright 2005, 2007 by Bochkanov Sergey
*************************************************************************/
void unpackqfromhermitiantridiagonal(const ap::complex_2d_array& a,
const int& n,
const bool& isupper,
const ap::complex_1d_array& tau,
ap::complex_2d_array& q)
{
int i;
int j;
ap::complex_1d_array v;
ap::complex_1d_array work;
int i_;
int i1_;
if( n==0 )
{
return;
}
//
// init
//
q.setbounds(1, n, 1, n);
v.setbounds(1, n);
work.setbounds(1, n);
for(i = 1; i <= n; i++)
{
for(j = 1; j <= n; j++)
{
if( i==j )
{
q(i,j) = 1;
}
else
{
q(i,j) = 0;
}
}
}
//
// unpack Q
//
if( isupper )
{
for(i = 1; i <= n-1; i++)
{
//
// Apply H(i)
//
for(i_=1; i_<=i;i_++)
{
v(i_) = a(i_,i+1);
}
v(i) = 1;
complexapplyreflectionfromtheleft(q, tau(i), v, 1, i, 1, n, work);
}
}
else
{
for(i = n-1; i >= 1; i--)
{
//
// Apply H(i)
//
i1_ = (i+1) - (1);
for(i_=1; i_<=n-i;i_++)
{
v(i_) = a(i_+i1_,i);
}
v(1) = 1;
complexapplyreflectionfromtheleft(q, tau(i), v, i+1, n, 1, n, work);
}
}
}
示例15: _i_cmatrixsyrkf
/********************************************************************
complex SYRK kernel
********************************************************************/
bool ialglib::_i_cmatrixsyrkf(int n,
int k,
double alpha,
const ap::complex_2d_array& a,
int ia,
int ja,
int optypea,
double beta,
ap::complex_2d_array& c,
int ic,
int jc,
bool isupper)
{
if( n>alglib_c_block || k>alglib_c_block )
return false;
if( n==0 )
return true;
//
// local buffers
//
double *arow, *crow;
int i;
double __abuf[2*alglib_c_block*alglib_c_block+alglib_simd_alignment];
double __cbuf[2*alglib_c_block*alglib_c_block+alglib_simd_alignment];
double __tmpbuf[2*alglib_c_block+alglib_simd_alignment];
double * const abuf = (double * const) alglib_align(__abuf, alglib_simd_alignment);
double * const cbuf = (double * const) alglib_align(__cbuf, alglib_simd_alignment);
double * const tmpbuf = (double * const) alglib_align(__tmpbuf,alglib_simd_alignment);
//
// copy A and C, task is transformed to "A*A^H"-form.
// if beta==0, then C is filled by zeros (and not referenced)
//
// alpha==0 or k==0 are correctly processed (A is not referenced)
//
if( alpha==0 )
k = 0;
if( k>0 )
{
if( optypea==0 )
mcopyblock_complex(n, k, &a(ia,ja), 3, a.getstride(), abuf);
else
mcopyblock_complex(k, n, &a(ia,ja), 1, a.getstride(), abuf);
}
mcopyblock_complex(n, n, &c(ic,jc), 0, c.getstride(), cbuf);
if( beta==0 )
{
for(i=0,crow=cbuf; i<n; i++,crow+=2*alglib_c_block)
if( isupper )
vzero(2*(n-i), crow+2*i, 1);
else
vzero(2*(i+1), crow, 1);
}
//
// update C
//
if( isupper )
{
for(i=0,arow=abuf,crow=cbuf; i<n; i++,arow+=2*alglib_c_block,crow+=2*alglib_c_block)
{
vcopy_complex(k, arow, 1, tmpbuf, 1, "Conj");
mv_complex(n-i, k, arow, tmpbuf, NULL, crow+2*i, 1, alpha, beta);
}
}
else
{
for(i=0,arow=abuf,crow=cbuf; i<n; i++,arow+=2*alglib_c_block,crow+=2*alglib_c_block)
{
vcopy_complex(k, arow, 1, tmpbuf, 1, "Conj");
mv_complex(i+1, k, abuf, tmpbuf, NULL, crow, 1, alpha, beta);
}
}
//
// copy back
//
mcopyunblock_complex(n, n, cbuf, 0, &c(ic,jc), c.getstride());
return true;
}