本文整理汇总了C++中agg::interactive_polygon::xn方法的典型用法代码示例。如果您正苦于以下问题:C++ interactive_polygon::xn方法的具体用法?C++ interactive_polygon::xn怎么用?C++ interactive_polygon::xn使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类agg::interactive_polygon
的用法示例。
在下文中一共展示了interactive_polygon::xn方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: on_init
virtual void on_init()
{
g_x1 = 0.0;
g_y1 = 0.0;
g_x2 = rbuf_img(0).width();
g_y2 = rbuf_img(0).height();
double x1 = g_x1;// * 100.0;
double y1 = g_y1;// * 100.0;
double x2 = g_x2;// * 100.0;
double y2 = g_y2;// * 100.0;
double dx = width() / 2.0 - (x2 - x1) / 2.0;
double dy = height() / 2.0 - (y2 - y1) / 2.0;
m_quad.xn(0) = floor(x1 + dx);
m_quad.yn(0) = floor(y1 + dy);// - 150;
m_quad.xn(1) = floor(x2 + dx);
m_quad.yn(1) = floor(y1 + dy);// - 110;
m_quad.xn(2) = floor(x2 + dx);
m_quad.yn(2) = floor(y2 + dy);// - 300;
m_quad.xn(3) = floor(x1 + dx);
m_quad.yn(3) = floor(y2 + dy);// - 200;
pixfmt pixf(rbuf_img(0));
pixf.apply_gamma_dir(m_gamma_lut);
}
示例2: on_idle
virtual void on_idle()
{
int i;
for(i = 0; i < 6; i++)
{
move_point(m_poly1.xn(i), m_poly1.yn(i), m_dx1[i], m_dy1[i]);
move_point(m_poly2.xn(i), m_poly2.yn(i), m_dx2[i], m_dy2[i]);
normalize_point(i);
}
force_redraw();
}
示例3: on_idle
virtual void on_idle()
{
int i;
for(i = 0; i < 6; i++)
{
move_point(m_poly.xn(i), m_poly.yn(i), m_dx[i], m_dy[i]);
}
force_redraw();
}
示例4:
the_application(agg::pix_format_e format, bool flip_y) :
agg::platform_support(format, flip_y),
m_quad(4, 5.0),
m_trans_type(420, 5.0, 420+130.0, 55.0, !flip_y)
{
parse_lion();
m_quad.xn(0) = g_x1;
m_quad.yn(0) = g_y1;
m_quad.xn(1) = g_x2;
m_quad.yn(1) = g_y1;
m_quad.xn(2) = g_x2;
m_quad.yn(2) = g_y2;
m_quad.xn(3) = g_x1;
m_quad.yn(3) = g_y2;
m_trans_type.add_item("Bilinear");
m_trans_type.add_item("Perspective");
m_trans_type.cur_item(0);
add_ctrl(m_trans_type);
}
示例5: on_init
virtual void on_init()
{
g_x1 = -150;
g_y1 = -150;
g_x2 = 150;
g_y2 = 150;
double trans_x1 = -200;
double trans_y1 = -200;
double trans_x2 = 200;
double trans_y2 = 200;
double dx = width() / 2.0 - (trans_x2 + trans_x1) / 2.0;
double dy = height() / 2.0 - (trans_y2 + trans_y1) / 2.0;
m_quad.xn(0) = floor(trans_x1 + dx);
m_quad.yn(0) = floor(trans_y1 + dy);
m_quad.xn(1) = floor(trans_x2 + dx);
m_quad.yn(1) = floor(trans_y1 + dy);
m_quad.xn(2) = floor(trans_x2 + dx);
m_quad.yn(2) = floor(trans_y2 + dy);
m_quad.xn(3) = floor(trans_x1 + dx);
m_quad.yn(3) = floor(trans_y2 + dy);
}
示例6: normalize_point
void normalize_point(unsigned i)
{
double d = agg::calc_distance(m_poly1.xn(i), m_poly1.yn(i),
m_poly2.xn(i), m_poly2.yn(i));
// 28.8 is 20 * sqrt(2)
if(d > 28.28)
{
m_poly2.xn(i) = m_poly1.xn(i) + (m_poly2.xn(i) - m_poly1.xn(i)) * 28.28 / d;
m_poly2.yn(i) = m_poly1.yn(i) + (m_poly2.yn(i) - m_poly1.yn(i)) * 28.28 / d;
}
}
示例7: on_init
virtual void on_init()
{
double dx = width() / 2.0 - (m_quad.xn(1) - m_quad.xn(0)) / 2.0;
double dy = height() / 2.0 - (m_quad.yn(2) - m_quad.yn(0)) / 2.0;
m_quad.xn(0) += dx;
m_quad.yn(0) += dy;
m_quad.xn(1) += dx;
m_quad.yn(1) += dy;
m_quad.xn(2) += dx;
m_quad.yn(2) += dy;
m_quad.xn(3) += dx;
m_quad.yn(3) += dy;
}
示例8: on_init
virtual void on_init()
{
m_quad1.xn(0) = 50;
m_quad1.yn(0) = 200 - 20;
m_quad1.xn(1) = width() / 2 - 25;
m_quad1.yn(1) = 200;
m_quad1.xn(2) = width() / 2 - 25;
m_quad1.yn(2) = height() - 50 - 20;
m_quad1.xn(3) = 50;
m_quad1.yn(3) = height() - 50;
m_quad2.xn(0) = width() / 2 + 25;
m_quad2.yn(0) = 200 - 20;
m_quad2.xn(1) = width() - 50;
m_quad2.yn(1) = 200;
m_quad2.xn(2) = width() - 50;
m_quad2.yn(2) = height() - 50 - 20;
m_quad2.xn(3) = width() / 2 + 25;
m_quad2.yn(3) = height() - 50;
}
示例9: on_init
virtual void on_init()
{
m_poly.xn(0) = 50;
m_poly.yn(0) = 50;
m_poly.xn(1) = 150 + 20;
m_poly.yn(1) = 150 - 20;
m_poly.xn(2) = 250 - 20;
m_poly.yn(2) = 250 + 20;
m_poly.xn(3) = 350 + 20;
m_poly.yn(3) = 350 - 20;
m_poly.xn(4) = 450 - 20;
m_poly.yn(4) = 450 + 20;
m_poly.xn(5) = 550;
m_poly.yn(5) = 550;
}
示例10: on_key
virtual void on_key(int x, int y, unsigned key, unsigned flags)
{
if(key == ' ')
{
double cx = (m_quad.xn(0) + m_quad.xn(1) + m_quad.xn(2) + m_quad.xn(3)) / 4;
double cy = (m_quad.yn(0) + m_quad.yn(1) + m_quad.yn(2) + m_quad.yn(3)) / 4;
agg::trans_affine tr = agg::trans_affine_translation(-cx, -cy);
tr *= agg::trans_affine_rotation(agg::pi / 2.0);
tr *= agg::trans_affine_translation(cx, cy);
tr.transform(&m_quad.xn(0), &m_quad.yn(0));
tr.transform(&m_quad.xn(1), &m_quad.yn(1));
tr.transform(&m_quad.xn(2), &m_quad.yn(2));
tr.transform(&m_quad.xn(3), &m_quad.yn(3));
force_redraw();
}
}
示例11: on_init
virtual void on_init()
{
m_poly1.xn(0) = 10 + 50;
m_poly1.yn(0) = -10 + 50;
m_poly1.xn(1) = 10 + 150 + 20;
m_poly1.yn(1) = -10 + 150 - 20;
m_poly1.xn(2) = 10 + 250 - 20;
m_poly1.yn(2) = -10 + 250 + 20;
m_poly1.xn(3) = 10 + 350 + 20;
m_poly1.yn(3) = -10 + 350 - 20;
m_poly1.xn(4) = 10 + 450 - 20;
m_poly1.yn(4) = -10 + 450 + 20;
m_poly1.xn(5) = 10 + 550;
m_poly1.yn(5) = -10 + 550;
m_poly2.xn(0) = -10 + 50;
m_poly2.yn(0) = 10 + 50;
m_poly2.xn(1) = -10 + 150 + 20;
m_poly2.yn(1) = 10 + 150 - 20;
m_poly2.xn(2) = -10 + 250 - 20;
m_poly2.yn(2) = 10 + 250 + 20;
m_poly2.xn(3) = -10 + 350 + 20;
m_poly2.yn(3) = 10 + 350 - 20;
m_poly2.xn(4) = -10 + 450 - 20;
m_poly2.yn(4) = 10 + 450 + 20;
m_poly2.xn(5) = -10 + 550;
m_poly2.yn(5) = 10 + 550;
}
示例12: on_draw
virtual void on_draw()
{
pixfmt pixf(rbuf_window());
pixfmt_pre pixf_pre(rbuf_window());
renderer_base rb(pixf);
renderer_base_pre rb_pre(pixf_pre);
if(!m_test_flag)
{
rb.clear(agg::rgba(1, 1, 1));
}
if(m_trans_type.cur_item() == 0)
{
// For the affine parallelogram transformations we
// calculate the 4-th (implicit) point of the parallelogram
m_quad.xn(3) = m_quad.xn(0) + (m_quad.xn(2) - m_quad.xn(1));
m_quad.yn(3) = m_quad.yn(0) + (m_quad.yn(2) - m_quad.yn(1));
}
if(!m_test_flag)
{
//--------------------------
// Render the "quad" tool and controls
g_rasterizer.add_path(m_quad);
agg::render_scanlines_aa_solid(g_rasterizer, g_scanline, rb, agg::rgba(0, 0.3, 0.5, 0.6));
//--------------------------
agg::render_ctrl(g_rasterizer, g_scanline, rb, m_trans_type);
}
// Prepare the polygon to rasterize. Here we need to fill
// the destination (transformed) polygon.
g_rasterizer.clip_box(0, 0, width(), height());
g_rasterizer.reset();
g_rasterizer.move_to_d(m_quad.xn(0), m_quad.yn(0));
g_rasterizer.line_to_d(m_quad.xn(1), m_quad.yn(1));
g_rasterizer.line_to_d(m_quad.xn(2), m_quad.yn(2));
g_rasterizer.line_to_d(m_quad.xn(3), m_quad.yn(3));
typedef agg::span_allocator<color_type> span_alloc_type;
span_alloc_type sa;
agg::image_filter<agg::image_filter_hanning> filter;
typedef agg::wrap_mode_reflect_auto_pow2 remainder_type;
typedef agg::image_accessor_wrap<pixfmt,
remainder_type,
remainder_type> img_source_type;
pixfmt img_pixf(rbuf_img(0));
img_source_type img_src(img_pixf);
enum subdiv_shift_e { subdiv_shift = 2 };
switch(m_trans_type.cur_item())
{
case 0:
{
// Note that we consruct an affine matrix that transforms
// a parallelogram to a rectangle, i.e., it's inverted.
// It's actually the same as:
// tr(g_x1, g_y1, g_x2, g_y2, m_triangle.polygon());
// tr.invert();
agg::trans_affine tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2);
// Also note that we can use the linear interpolator instead of
// arbitrary span_interpolator_trans. It works much faster,
// but the transformations must be linear and parellel.
typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type;
interpolator_type interpolator(tr);
typedef span_image_filter_2x2<img_source_type,
interpolator_type> span_gen_type;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg);
break;
}
case 1:
{
agg::trans_bilinear tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2);
if(tr.is_valid())
{
typedef agg::span_interpolator_linear<agg::trans_bilinear> interpolator_type;
interpolator_type interpolator(tr);
typedef span_image_filter_2x2<img_source_type,
interpolator_type> span_gen_type;
span_gen_type sg(img_src, interpolator, filter);
agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg);
}
break;
}
case 2:
{
agg::trans_perspective tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2);
if(tr.is_valid())
{
//.........这里部分代码省略.........
示例13: on_draw
virtual void on_draw()
{
if(m_gamma.value() != m_old_gamma)
{
m_gamma_lut.gamma(m_gamma.value());
load_img(0, "spheres");
pixfmt pixf(rbuf_img(0));
pixf.apply_gamma_dir(m_gamma_lut);
m_old_gamma = m_gamma.value();
}
pixfmt pixf(rbuf_window());
pixfmt_pre pixf_pre(rbuf_window());
renderer_base rb(pixf);
renderer_base_pre rb_pre(pixf_pre);
renderer_solid r(rb);
rb.clear(agg::rgba(1, 1, 1));
if(m_trans_type.cur_item() < 2)
{
// For the affine parallelogram transformations we
// calculate the 4-th (implicit) point of the parallelogram
m_quad.xn(3) = m_quad.xn(0) + (m_quad.xn(2) - m_quad.xn(1));
m_quad.yn(3) = m_quad.yn(0) + (m_quad.yn(2) - m_quad.yn(1));
}
//--------------------------
// Render the "quad" tool and controls
g_rasterizer.add_path(m_quad);
r.color(agg::rgba(0, 0.3, 0.5, 0.1));
agg::render_scanlines(g_rasterizer, g_scanline, r);
// Prepare the polygon to rasterize. Here we need to fill
// the destination (transformed) polygon.
g_rasterizer.clip_box(0, 0, width(), height());
g_rasterizer.reset();
int b = 0;
g_rasterizer.move_to_d(m_quad.xn(0)-b, m_quad.yn(0)-b);
g_rasterizer.line_to_d(m_quad.xn(1)+b, m_quad.yn(1)-b);
g_rasterizer.line_to_d(m_quad.xn(2)+b, m_quad.yn(2)+b);
g_rasterizer.line_to_d(m_quad.xn(3)-b, m_quad.yn(3)+b);
typedef agg::span_allocator<color_type> span_alloc_type;
span_alloc_type sa;
agg::image_filter_bilinear filter_kernel;
agg::image_filter_lut filter(filter_kernel, true);
pixfmt pixf_img(rbuf_img(0));
typedef agg::image_accessor_clone<pixfmt> source_type;
source_type source(pixf_img);
start_timer();
switch(m_trans_type.cur_item())
{
case 0:
{
agg::trans_affine tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2);
typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type;
interpolator_type interpolator(tr);
typedef image_filter_2x2_type<source_type,
interpolator_type> span_gen_type;
span_gen_type sg(source, interpolator, filter);
agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg);
break;
}
case 1:
{
agg::trans_affine tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2);
typedef agg::span_interpolator_linear<agg::trans_affine> interpolator_type;
typedef image_resample_affine_type<source_type> span_gen_type;
interpolator_type interpolator(tr);
span_gen_type sg(source, interpolator, filter);
sg.blur(m_blur.value());
agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg);
break;
}
case 2:
{
agg::trans_perspective tr(m_quad.polygon(), g_x1, g_y1, g_x2, g_y2);
if(tr.is_valid())
{
typedef agg::span_interpolator_linear_subdiv<agg::trans_perspective> interpolator_type;
interpolator_type interpolator(tr);
typedef image_filter_2x2_type<source_type,
interpolator_type> span_gen_type;
span_gen_type sg(source, interpolator, filter);
agg::render_scanlines_aa(g_rasterizer, g_scanline, rb_pre, sa, sg);
}
break;
}
//.........这里部分代码省略.........