本文整理汇总了C++中yvec_t类的典型用法代码示例。如果您正苦于以下问题:C++ yvec_t类的具体用法?C++ yvec_t怎么用?C++ yvec_t使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了yvec_t类的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: clone
double
SvmSgd::my_evaluateEta(int imin, int imax, const xvec_t &xp, const yvec_t &yp, double eta00)
{
SvmSgd clone(*this); // take a copy of the current state
cout << "[my_evaluateEta: clone.wDivisor: ]" << setprecision(12) << clone.wDivisor << " clone.t: " << clone.t << " clone.eta0: " << clone.eta0 << endl;
cout << "Trying eta=" << eta00 ;
assert(imin <= imax);
double _t = 0;
double eta = 0;
for (int i=imin; i<=imax; i++){
eta = eta00 / (1 + lambda * eta00 * _t);
//cout << "[my_evaluateEta:] Eta: " << eta << endl;
clone.trainOne(xp.at(i), yp.at(i), eta);
_t++;
}
double loss = 0;
double cost = 0;
for (int i=imin; i<=imax; i++)
clone.testOne(xp.at(i), yp.at(i), &loss, 0);
loss = loss / (imax - imin + 1);
cost = loss + 0.5 * lambda * clone.wnorm();
cout <<" yields loss " << loss << endl;
// cout << "Trying eta=" << eta << " yields cost " << cost << endl;
return cost;
}
示例2: load
void
load(const char *fname, xvec_t &xp, yvec_t &yp)
{
cout << "Loading " << fname << "." << endl;
igzstream f;
f.open(fname);
if (! f.good())
{
cerr << "ERROR: cannot open " << fname << "." << endl;
exit(10);
}
int pcount = 0;
int ncount = 0;
bool binary;
string suffix = fname;
if (suffix.size() >= 7)
suffix = suffix.substr(suffix.size() - 7);
if (suffix == ".dat.gz")
binary = false;
else if (suffix == ".bin.gz")
binary = true;
else
{
cerr << "ERROR: filename should end with .bin.gz or .dat.gz" << endl;
exit(10);
}
while (f.good())
{
SVector x;
double y;
if (binary)
{
y = (f.get()) ? +1 : -1;
x.load(f);
}
else
{
f >> y >> x;
}
if (f.good())
{
assert(y == +1 || y == -1);
xp.push_back(x);
yp.push_back(y);
if (y > 0)
pcount += 1;
else
ncount += 1;
if (x.size() > dim)
dim = x.size();
}
if (trainsize > 0 && xp.size() > (unsigned int)trainsize)
break;
}
cout << "Read " << pcount << "+" << ncount
<< "=" << pcount + ncount << " examples." << endl;
}
示例3: assert
void
SvmSgd::test(int imin, int imax,
const xvec_t &xp, const yvec_t &yp,
const char *prefix)
{
cout << prefix << "Testing on [" << imin << ", " << imax << "]." << endl;
assert(imin <= imax);
int nerr = 0;
double cost = 0;
for (int i=imin; i<=imax; i++)
{
const SVector &x = xp.at(i);
double y = yp.at(i);
double wx = dot(w,x);
double z = y * (wx + bias);
if (z <= 0)
nerr += 1;
#if LOSS < LOGLOSS
if (z < 1)
#endif
cost += loss(z);
}
int n = imax - imin + 1;
double loss = cost / n;
cost = loss + 0.5 * lambda * dot(w,w);
cout << prefix << setprecision(4)
<< "Misclassification: " << (double)nerr * 100.0 / n << "%." << endl;
cout << prefix << setprecision(12)
<< "Cost: " << cost << "." << endl;
cout << prefix << setprecision(12)
<< "Loss: " << loss << "." << endl;
}
示例4: clone
double
SvmAisgd::evaluateEta(int imin, int imax, const xvec_t &xp, const yvec_t &yp, double eta)
{
SvmAisgd clone(*this); // take a copy of the current state
assert(imin <= imax);
for (int i=imin; i<=imax; i++)
clone.trainOne(xp.at(i), yp.at(i), eta, 1.0);
double loss = 0;
double cost = 0;
for (int i=imin; i<=imax; i++)
clone.testOne(xp.at(i), yp.at(i), &loss, 0);
loss = loss / (imax - imin + 1);
cost = loss + 0.5 * lambda * clone.wnorm();
// cout << "Trying eta=" << eta << " yields cost " << cost << endl;
return cost;
}
示例5: loadmult_datafile_sub
static void
loadmult_datafile_sub(istream &f, bool binary, const char *fname,
xvec_t &xp, yvec_t &yp, int &maxdim, int maxrows)
{
cout << "# Reading file " << fname << endl;
if (! f.good())
assertfail("Cannot open " << fname);
int pcount = 0;
while (f.good() && maxrows--)
{
double y;
SVector x;
y = (f.get());
x.load(f);
if (f.good())
{
xp.push_back(x);
yp.push_back(y);
pcount += 1;
if (x.size() > maxdim)
maxdim = x.size();
}
}
cout << "# Read " << pcount << " examples." << endl;
}
示例6: evaluate_objective
double SvmSgdSJE::evaluate_objective(double *xp, const yvec_t yp, double *emb_mat, double *att_mat){
double risk = 0.0;
cout << "start to evaluate" << endl;
for(int i = 0; i < nsamples; i++){
double max_score = 0.0;
int ni = yp.at(i) - 1;
double norm_emb = 0.0;
double xproj[emb_dim*dims];
memset(xproj, 0, emb_dim*dims*sizeof(double));
for(int j = 0; j < emb_dim; j++){
for(int k = 0; k < dims; k++){
xproj[j] += xp[dims*i+k] * emb_mat[dims*j+k];
norm_emb += lambda * emb_mat[dims*j+k] * emb_mat[dims*j+k];
}
}
for(int c = 0; c < nclass; c++){
double score = 0.0;
if(c != ni)
score += 1;
for(int j = 0; j < emb_dim; j++){
score += xproj[j] * (att_mat[emb_dim*c+j] - att_mat[emb_dim*ni+j]);
}
if(max_score < score){
max_score = score;
}
}
if(max_score > 0){
risk += max_score;
}
else cout << "The risk is below zero" << endl;
risk += norm_emb;
}
return risk;
}
示例7: assert
/// Perform a test pass
void
SvmAisgd::test(int imin, int imax, const xvec_t &xp, const yvec_t &yp, const char *prefix)
{
cout << prefix << "Testing on [" << imin << ", " << imax << "]." << endl;
assert(imin <= imax);
double nerr = 0;
double loss = 0;
for (int i=imin; i<=imax; i++)
testOne(xp.at(i), yp.at(i), &loss, &nerr);
nerr = nerr / (imax - imin + 1);
loss = loss / (imax - imin + 1);
double cost = loss + 0.5 * lambda * anorm();
cout << prefix
<< "Loss=" << setprecision(12) << loss
<< " Cost=" << setprecision(12) << cost
<< " Misclassification=" << setprecision(4) << 100 * nerr << "%."
<< endl;
}
示例8: generator
/// Perform a SAG training epoch
void
SvmSag::trainSag(int imin, int imax, const xvec_t &xp, const yvec_t &yp, const char *prefix)
{
cout << prefix << "Training on [" << imin << ", " << imax << "]." << endl;
assert(imin <= imax);
assert(imin >= sdimin);
assert(imax <= sdimax);
assert(eta > 0);
uniform_int_generator generator(imin, imax);
for (int i=imin; i<=imax; i++)
{
int ii = generator();
trainOne(xp.at(ii), yp.at(ii), eta, ii);
t += 1;
}
cout << prefix << setprecision(6) << "wNorm=" << wnorm();
#if BIAS
cout << " wBias=" << wBias;
#endif
cout << endl;
}
示例9: assert
/// Perform initial training epoch
void
SvmSag::trainInit(int imin, int imax, const xvec_t &xp, const yvec_t &yp, const char *prefix)
{
cout << prefix << "Training on [" << imin << ", " << imax << "]." << endl;
assert(imin <= imax);
assert(eta > 0);
assert(m == 0);
sd.resize(imax - imin + 1);
sdimin = imin;
sdimax = imax;
for (int i=imin; i<=imax; i++)
{
m += 1;
trainOne(xp.at(i), yp.at(i), eta, i);
t += 1;
}
cout << prefix << setprecision(6) << "wNorm=" << wnorm();
#if BIAS
cout << " wBias=" << wBias;
#endif
cout << endl;
}
示例10: assert
/// Perform a training epoch
void
SvmSgd::train(int imin, int imax, const xvec_t &xp, const yvec_t &yp, const char *prefix)
{
#if VERBOSE
cout << prefix << "Training on [" << imin << ", " << imax << "]." << endl;
#endif
assert(imin <= imax);
assert(eta0 > 0);
for (int i=imin; i<=imax; i++)
{
double eta = eta0 / (1 + lambda * eta0 * t);
trainOne(xp.at(i), yp.at(i), eta);
t += 1;
}
#if VERBOSE
cout << prefix << setprecision(6) << "wNorm=" << wnorm();
#if BIAS
cout << " wBias=" << wBias;
#endif
cout << endl;
#endif
}
示例11: setprecision
/// Perform a training epoch
void
SvmSgd::train(int imin, int imax, const xvec_t &xp, const yvec_t &yp, const char *prefix)
{
cout << prefix << "Training on [" << imin << ", " << imax << "]." << endl;
assert(imin <= imax);
assert(eta0 > 0);
//cout << "wDivisor: " << wDivisor << " wBias: " << wBias<< endl;
for (int i=imin; i<=imax; i++)
{
double eta = eta0 / (1 + lambda * eta0 * t);
//cout << "[my_evaluateEta:] Eta: " << eta << endl;
trainOne(xp.at(i), yp.at(i), eta);
t += 1;
}
//cout << "\nAfter training: \n wDivisor: " << wDivisor << " wBias: " << wBias<< endl;
cout << prefix << setprecision(6) << "wNorm=" << wnorm();
#if BIAS
cout << " wBias=" << wBias;
#endif
cout << endl;
}
示例12: test
/// Testing
double SvmSgdSJE::test(int imin, int imax, double *xp, const yvec_t &yp, int dims,
double *emb_mat, int emb_dim, double *att_mat, const char* prefix)
{
cout << prefix << " Testing Multi-class for [" << imin << ", " << imax << "]." << endl;
assert(imin <= imax);
int nsamples = imax-imin+1;
double* scores = new double[nclass*nsamples];
int* conf_mat = new int[nclass*nclass];
memset(conf_mat,0,sizeof(int)*nclass*nclass);
for(int i = 0; i < nclass*nsamples; i++)
scores[i] = 0.0;
double xproj[emb_dim];
for(int i = 0; i < nsamples; i++)
{
// project test images onto label embedding space
for(int iy = 0; iy < emb_dim; iy++)
xproj[iy] = 0.0;
// project training images onto label embedding space
double xproj_norm = 0;
for(int iy = 0; iy < emb_dim; iy++)
{
for(int ix = 0; ix < dims; ix++)
{
xproj[iy] += xp[dims*i + ix] * emb_mat[dims*iy + ix];
}
xproj_norm += xproj[iy] * xproj[iy];
}
// normalize the projected vector
xproj_norm = sqrt(xproj_norm);
if(xproj_norm != 0)
{
// calculate the scores using dot product similarity using classifiers
for(int iy = 0; iy < emb_dim; iy++)
xproj[iy] = xproj[iy] / xproj_norm;
}
for(int j = 0; j < nclass; j++)
{
for(int iy = 0; iy < emb_dim; iy++)
scores[nsamples*j + i] += xproj[iy] * att_mat[emb_dim*j + iy];
}
}
double nerr = 0;
for(int i = 0; i < nsamples; i++)
{
int true_class = int(yp.at(i)-1);
double max_score = -1.0f;
int predicted_class = -1;
for(int c = 0; c < nclass; c++)
{
if ( scores[nsamples*c+i] > max_score )
{
predicted_class = c;
max_score = scores[nsamples*c+i];
}
}
conf_mat[nclass*true_class+predicted_class]++;
//cout << true_class << " " << predicted_class << endl;
if( true_class != predicted_class )
nerr++;
}
nerr = nerr / nsamples;
cout << " Per image accuracy = " << setprecision(4) << 100-(100 * nerr) << "%." << endl;
double sum_diag_conf=0;
double sum_each_line;
for(int i = 0; i < nclass; i++)
{
sum_each_line=0;
for(int j=0; j < nclass; j++)
{
sum_each_line = sum_each_line + conf_mat[i*nclass+j];
}
cout << " Class = " << i << " accuracy = " << setprecision(4) << double(conf_mat[i*nclass+i]/sum_each_line) << "%." << endl;
sum_diag_conf = sum_diag_conf + double(double(conf_mat[i*nclass+i])/sum_each_line);
}
cout << " Per " << prefix << " class accuracy = " << setprecision(4) << 100 * double(sum_diag_conf / nclass) << "%." << endl;
double acc = double(sum_diag_conf / nclass);
delete[] scores;
delete[] conf_mat;
return acc;
}
示例13: train
/// Training the svms with SJE using ranking objective
void SvmSgdSJE::train(int imin, int imax, double *xp, const yvec_t &yp, int dims,
double *att_mat, int cls_dim,
double *emb_mat, int emb_dim,
const char *prefix)
{
cout << prefix << " Training SJE for lbd = " << lambda << ", eta = " << eta << " and " << nclass << " classes" << endl;
assert(imin <= imax);
double xproj[emb_dim];
//int i = 0;
for(int i = imin; i <= imax; i++)
{
//i = rand()%imax + imin;
for(int iy = 0; iy < emb_dim; iy++)
xproj[iy] = 0.0;
// project training images onto label embedding space
double xproj_norm = 0;
for(int iy = 0; iy < emb_dim; iy++)
{
for(int ix = 0; ix < dims; ix++)
{
xproj[iy] += xp[dims*i + ix] * emb_mat[dims*iy + ix];
}
xproj_norm += xproj[iy] * xproj[iy];
}
// normalize the projected vector
xproj_norm = sqrt(xproj_norm);
for(int iy = 0; iy < emb_dim; iy++)
xproj[iy] = xproj[iy] / xproj_norm;
int best_index = -1;
double best_score = 0.0;
for(int j = 0; j < nclass; j++)
{
double score = 0.0;
for(int iy = 0; iy < emb_dim; iy++)
score += xproj[iy] * att_mat[emb_dim*j + iy];
//delta(y_n,y)= 1 if y_n != y
if(j != yp.at(i) - 1)
score += 1;
if(score > best_score)
{
best_score = score;
best_index = j;
}
}
//update the embedding matrix when the decision is wrong
if(best_index != int(yp.at(i)-1) && best_index != -1)
{
// memcpy(prev_emb_mat, emb_mat, emb_dim*dims*sizeof(double));
int ni = int(yp.at(i) - 1);
for(int iy = 0; iy < emb_dim; iy++)
{
for(int ix = 0; ix < dims; ix++)
{
emb_mat[dims*iy + ix] -= eta * (xp[dims*i + ix] * (att_mat[emb_dim*best_index + iy] - att_mat[emb_dim*ni + iy]) + lambda*emb_mat[dims*iy + ix]);
}
}
}
t += 1;
}
//cout << "gradient norm=" << gradient_norm(g,dims*emb_dim) << endl;
}