当前位置: 首页>>代码示例>>C++>>正文


C++ vnl_matrix::transpose方法代码示例

本文整理汇总了C++中vnl_matrix::transpose方法的典型用法代码示例。如果您正苦于以下问题:C++ vnl_matrix::transpose方法的具体用法?C++ vnl_matrix::transpose怎么用?C++ vnl_matrix::transpose使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在vnl_matrix的用法示例。


在下文中一共展示了vnl_matrix::transpose方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: utf

/// \brief		Unscented transform of process Sigma points
void UnscentedKalmanFilter::utf(vnl_matrix<double> X, vnl_vector<double> u,
	vnl_vector<double> &y, vnl_matrix<double> &Y, vnl_matrix<double> &P, vnl_matrix<double> &Y1)
{
	// determine number of sigma points
	unsigned int L = X.cols();
	// zero output matrices
	y.fill(0.0); Y.fill(0.0);

	// transform the sigma points and put them as columns in a matrix Y
	for( int k = 0; k < L; k++ )
	{
		vnl_vector<double> xk = X.get_column(k);
		vnl_vector<double> yk(N);
		f(xk,u,yk);
		Y.set_column(k,yk);
		// add each transformed point to the weighted mean
		y = y + Wm.get(0,k)*yk;
	}

	// create a matrix with each column being the weighted mean
	vnl_matrix<double> Ymean(N,L);
	for( int k = 0; k < L; k++ )
		Ymean.set_column(k,y);
	// set the matrix of difference vectors
	Y1 = Y-Ymean;
	// calculate the covariance matrix output
	vnl_matrix<double> WC(L,L,0.0);
	WC.set_diagonal(Wc.get_row(0));
	P = Y1*WC*Y1.transpose();
}
开发者ID:josephgreer,项目名称:ultrasteer,代码行数:31,代码来源:UnscentedKalmanFilter.cpp

示例2: exp

vnl_matrix<double> MCLR_SM::Get_F_Matrix(vnl_matrix<double> data_bias,vnl_matrix<double> w_temp)
{
	vnl_matrix<double> epow_matrix = w_temp.transpose()*data_bias;
	vnl_matrix<double> temp_f;
	temp_f.set_size(epow_matrix.rows(),epow_matrix.cols());
	for(int i=0;i<epow_matrix.rows();++i)
	{
	  for(int j=0;j<epow_matrix.cols();++j)
	   {
		  temp_f(i,j) = exp(epow_matrix(i,j));
	  }
	}
	return temp_f;
}
开发者ID:JumperWang,项目名称:farsight-clone,代码行数:14,代码来源:mclr_SM.cpp

示例3: Get_Hessian

void MCLR_SM::Get_Hessian(vnl_matrix<double> data_with_bias)
{	
    vnl_matrix<double> f;
	f = Get_F_Matrix(data_with_bias,m.w);
	f = Normalize_F_Sum(f);

	vnl_matrix<double> temp_hessian; // temporary Hessian Matrix
	temp_hessian.set_size((no_of_features+1)*(no_of_classes),(no_of_features+1)*(no_of_classes));

	for(int i = 1; i<=no_of_classes ;++i)
	{
		vnl_vector<double> ith_row  = f.get_row(i-1);

		for(int j = 0; j< x.cols() ; ++j)
		{
			ith_row(j) = ith_row(j)*(1-ith_row(j));
		}


		vnl_diag_matrix<double> diagonal_matrix(ith_row);

		vnl_matrix<double> temp_matrix =  -data_with_bias*diagonal_matrix*data_with_bias.transpose();
		temp_hessian.update(temp_matrix,(i-1)*(no_of_features+1),(i-1)*(no_of_features+1));


		//
		//for(int k = 0; k< class_vector.size() ; ++k)
		//	std::cout<<class_vector(k)<<"--------------"<<std::endl;	
			
		vnl_vector<int> all_class_but_i;
		all_class_but_i.set_size(class_vector.size()-1);
		int counter = 0;

		for(int k = 0; k< class_vector.size() ; ++k)
		{	
			if(class_vector(k)!=i)
			{			
				all_class_but_i.put(counter,class_vector(k));
				counter ++;
			}
		}	

		//for(int k = 0; k< class_vector.size() ; ++k)
		//	std::cout<<class_vector(k)<<"--------------"<<std::endl;
		
		for(int k = 0; k< all_class_but_i.size() ; ++k)
		{	
			ith_row  = f.get_row(i-1);
			vnl_vector<double> kth_row  = f.get_row(all_class_but_i(k)-1);
			for(int j = 0; j< x.cols() ; ++j)
			{
			//f(i,:).*(-f(k,:))
				ith_row(j) = ith_row(j)*(-kth_row(j));
			}

			vnl_diag_matrix<double> diagonal_matrix(ith_row);
			vnl_matrix<double> temp_matrix = -data_with_bias*diagonal_matrix*data_with_bias.transpose();
			temp_hessian.update(temp_matrix,(i-1)*(no_of_features+1),(all_class_but_i(k)-1)*(no_of_features+1));

		}
	}
		//hessian = hessian - diag(C*(delta./(sqrt(w(:).^2+delta)).^3));	
		//Need to vectorize w 
		
		vnl_vector<double> w_column_ordered = Column_Order_Matrix(m.w);
		
		int count = 0;
		for(int i=0;i<m.w.rows();++i)
		{
		  for(int j=0;j<m.w.cols();++j)	
		  {
			w_column_ordered(count) = (m.sparsity_control)*(delta/pow(sqrt(pow(w_column_ordered(count),2)+delta),3));
			count++;
		  }
		}
		
		vnl_diag_matrix<double> diagonal_matrix(w_column_ordered);
		temp_hessian = temp_hessian - diagonal_matrix;
		//temp_hessian.extract(hessian,no_of_features+2,no_of_features+2);
		hessian = temp_hessian;

		//std::cout<<"------------------------------------------------------"<<std::endl;
		//std::cout<<hessian.get_row(0)<<std::endl;
		//std::cout<<"------------------------------------------------------"<<std::endl;
		//std::cout<<hessian.get_row(115)<<std::endl;
		//std::cout<<"------------------------------------------------------"<<std::endl;

}	
开发者ID:JumperWang,项目名称:farsight-clone,代码行数:88,代码来源:mclr_SM.cpp


注:本文中的vnl_matrix::transpose方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。