本文整理汇总了C++中vec_long类的典型用法代码示例。如果您正苦于以下问题:C++ vec_long类的具体用法?C++ vec_long怎么用?C++ vec_long使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了vec_long类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: recursiveInterpolateMod
static void recursiveInterpolateMod(ZZX& poly, const vec_long& x, vec_long& y,
const vec_zz_p& xmod, vec_zz_p& ymod,
long p, long p2e)
{
if (p2e<=1) { // recursion edge condition, mod-1 poly = 0
clear(poly);
return;
}
// convert y input to zz_p
for (long j=0; j<y.length(); j++) ymod[j] = to_zz_p(y[j] % p);
// a polynomial p_i s.t. p_i(x[j]) = i'th p-base digit of poly(x[j])
zz_pX polyMod;
interpolate(polyMod, xmod, ymod); // interpolation modulo p
ZZX polyTmp; conv(polyTmp, polyMod); // convert to ZZX
// update ytmp by subtracting the new digit, then dividing by p
for (long j=0; j<y.length(); j++) {
y[j] -= polyEvalMod(polyTmp,x[j],p2e); // mod p^e
if (y[j]<0) y[j] += p2e;
// if (y[j] % p != 0) {
// cerr << "@@error (p2^e="<<p2e<<"): y["<<j<<"] not divisible by "<<p<< endl;
// exit(0);
// }
y[j] /= p;
} // maybe it's worth optimizing above by using multi-point evaluation
// recursive call to get the solution of poly'(x)=y mod p^{e-1}
recursiveInterpolateMod(poly, x, y, xmod, ymod, p, p2e/p);
// return poly = p*poly' + polyTmp
poly *= p;
poly += polyTmp;
}
示例2: FFT
void Cmodulus::FFT(vec_long &y, const ZZX& x) const
{
FHE_TIMER_START;
zz_pBak bak; bak.save();
context.restore();
zz_pX& tmp = Cmodulus::getScratch_zz_pX();
{ FHE_NTIMER_START(FFT_remainder);
conv(tmp,x); // convert input to zpx format
}
if (!ALT_CRT && zMStar->getPow2()) {
// special case when m is a power of 2
long k = zMStar->getPow2();
long phim = (1L << (k-1));
long dx = deg(tmp);
long p = zz_p::modulus();
const zz_p *powers_p = (*powers).rep.elts();
const mulmod_precon_t *powers_aux_p = powers_aux.elts();
y.SetLength(phim);
long *yp = y.elts();
zz_p *tmp_p = tmp.rep.elts();
for (long i = 0; i <= dx; i++)
yp[i] = MulModPrecon(rep(tmp_p[i]), rep(powers_p[i]), p, powers_aux_p[i]);
for (long i = dx+1; i < phim; i++)
yp[i] = 0;
FFTFwd(yp, yp, k-1, *zz_pInfo->p_info);
return;
}
zz_p rt;
conv(rt, root); // convert root to zp format
BluesteinFFT(tmp, getM(), rt, *powers, powers_aux, *Rb); // call the FFT routine
// copy the result to the output vector y, keeping only the
// entries corresponding to primitive roots of unity
y.SetLength(zMStar->getPhiM());
long i,j;
long m = getM();
for (i=j=0; i<m; i++)
if (zMStar->inZmStar(i)) y[j++] = rep(coeff(tmp,i));
}
示例3: RandomBasisElt
static
void RandomBasisElt(ZZ_pX& g, const vec_long& D, const vec_ZZVec& M)
{
ZZ t1, t2;
long n = D.length();
long i, j, s;
g.rep.SetLength(n);
vec_ZZ_p& v = g.rep;
for (j = n-1; j >= 0; j--) {
if (D[j] == -1)
random(v[j]);
else {
i = D[j];
// v[j] = sum_{s=j+1}^{n-1} v[s]*M[i,s]
clear(t1);
for (s = j+1; s < n; s++) {
mul(t2, rep(v[s]), M[i][s]);
add(t1, t1, t2);
}
conv(v[j], t1);
}
}
g.normalize();
}
示例4: FFT_aux
void Cmodulus::FFT_aux(vec_long &y, zz_pX& tmp) const
{
if (zMStar->getPow2()) {
// special case when m is a power of 2
long k = zMStar->getPow2();
long phim = (1L << (k-1));
long dx = deg(tmp);
long p = zz_p::modulus();
const zz_p *powers_p = (*powers).rep.elts();
const mulmod_precon_t *powers_aux_p = powers_aux.elts();
y.SetLength(phim);
long *yp = y.elts();
zz_p *tmp_p = tmp.rep.elts();
for (long i = 0; i <= dx; i++)
yp[i] = MulModPrecon(rep(tmp_p[i]), rep(powers_p[i]), p, powers_aux_p[i]);
for (long i = dx+1; i < phim; i++)
yp[i] = 0;
#ifdef FHE_OPENCL
AltFFTFwd(yp, yp, k-1, *altFFTInfo);
#else
FFTFwd(yp, yp, k-1, *zz_pInfo->p_info);
#endif
return;
}
zz_p rt;
conv(rt, root); // convert root to zp format
BluesteinFFT(tmp, getM(), rt, *powers, powers_aux, *Rb); // call the FFT routine
// copy the result to the output vector y, keeping only the
// entries corresponding to primitive roots of unity
y.SetLength(zMStar->getPhiM());
long i,j;
long m = getM();
for (i=j=0; i<m; i++)
if (zMStar->inZmStar(i)) y[j++] = rep(coeff(tmp,i));
}
示例5: interpolateMod
// Interpolate the integer polynomial such that poly(x[i] mod p)=y[i] (mod p^e)
// It is assumed that the points x[i] are all distinct modulo p
void interpolateMod(ZZX& poly, const vec_long& x, const vec_long& y,
long p, long e)
{
poly = ZZX::zero(); // initialize to zero
long p2e = power_long(p,e); // p^e
vec_long ytmp(INIT_SIZE, y.length()); // A temporary writable copy
for (long j=0; j<y.length(); j++) {
ytmp[j] = y[j] % p2e;
if (ytmp[j] < 0) ytmp[j] += p2e;
}
zz_pBak bak; bak.save(); // Set the current modulus to p
zz_p::init(p);
vec_zz_p xmod(INIT_SIZE, x.length()); // convert to zz_p
for (long j=0; j<x.length(); j++) xmod[j] = to_zz_p(x[j] % p);
vec_zz_p ymod(INIT_SIZE, y.length()); // scratch space
recursiveInterpolateMod(poly, x, ytmp, xmod, ymod, p, p2e);
}
示例6: ResHalfGCD
void ResHalfGCD(zz_pX& U, zz_pX& V, vec_zz_p& cvec, vec_long& dvec)
{
long d_red = (deg(U)+1)/2;
if (IsZero(V) || deg(V) <= deg(U) - d_red) {
return;
}
long du = deg(U);
long d1 = (d_red + 1)/2;
if (d1 < 1) d1 = 1;
if (d1 >= d_red) d1 = d_red - 1;
zz_pXMatrix M1;
ResHalfGCD(M1, U, V, d1, cvec, dvec);
mul(U, V, M1);
long d2 = deg(V) - du + d_red;
if (IsZero(V) || d2 <= 0) {
return;
}
M1(0,0).kill();
M1(0,1).kill();
M1(1,0).kill();
M1(1,1).kill();
zz_pX Q;
append(cvec, LeadCoeff(V));
append(dvec, dvec[dvec.length()-1]-deg(U)+deg(V));
DivRem(Q, U, U, V);
swap(U, V);
ResHalfGCD(M1, U, V, d2, cvec, dvec);
mul(U, V, M1);
}
示例7: ResIterHalfGCD
void ResIterHalfGCD(ZZ_pXMatrix& M_out, ZZ_pX& U, ZZ_pX& V, long d_red,
vec_ZZ_p& cvec, vec_long& dvec)
{
M_out(0,0).SetMaxLength(d_red);
M_out(0,1).SetMaxLength(d_red);
M_out(1,0).SetMaxLength(d_red);
M_out(1,1).SetMaxLength(d_red);
set(M_out(0,0)); clear(M_out(0,1));
clear(M_out(1,0)); set(M_out(1,1));
long goal = deg(U) - d_red;
if (deg(V) <= goal)
return;
ZZVec tmp(deg(U)+1, ZZ_p::ExtendedModulusSize());
ZZ_pX Q, t(INIT_SIZE, d_red);
while (deg(V) > goal) {
append(cvec, LeadCoeff(V));
append(dvec, dvec[dvec.length()-1]-deg(U)+deg(V));
PlainDivRem(Q, U, U, V, tmp);
swap(U, V);
mul(t, Q, M_out(1,0));
sub(t, M_out(0,0), t);
M_out(0,0) = M_out(1,0);
M_out(1,0) = t;
mul(t, Q, M_out(1,1));
sub(t, M_out(0,1), t);
M_out(0,1) = M_out(1,1);
M_out(1,1) = t;
}
}
示例8: iFFT
void Cmodulus::iFFT(zz_pX &x, const vec_long& y)const
{
FHE_TIMER_START;
zz_pBak bak; bak.save();
context.restore();
if (zMStar->getPow2()) {
// special case when m is a power of 2
long k = zMStar->getPow2();
long phim = (1L << (k-1));
long p = zz_p::modulus();
const zz_p *ipowers_p = (*ipowers).rep.elts();
const mulmod_precon_t *ipowers_aux_p = ipowers_aux.elts();
const long *yp = y.elts();
vec_long& tmp = Cmodulus::getScratch_vec_long();
tmp.SetLength(phim);
long *tmp_p = tmp.elts();
#ifdef FHE_OPENCL
AltFFTRev1(tmp_p, yp, k-1, *altFFTInfo);
#else
FFTRev1(tmp_p, yp, k-1, *zz_pInfo->p_info);
#endif
x.rep.SetLength(phim);
zz_p *xp = x.rep.elts();
for (long i = 0; i < phim; i++)
xp[i].LoopHole() = MulModPrecon(tmp_p[i], rep(ipowers_p[i]), p, ipowers_aux_p[i]);
x.normalize();
return;
}
zz_p rt;
long m = getM();
// convert input to zpx format, initializing only the coeffs i s.t. (i,m)=1
x.rep.SetLength(m);
long i,j;
for (i=j=0; i<m; i++)
if (zMStar->inZmStar(i)) x.rep[i].LoopHole() = y[j++]; // DIRT: y[j] already reduced
x.normalize();
conv(rt, rInv); // convert rInv to zp format
BluesteinFFT(x, m, rt, *ipowers, ipowers_aux, *iRb); // call the FFT routine
// reduce the result mod (Phi_m(X),q) and copy to the output polynomial x
{ FHE_NTIMER_START(iFFT_division);
rem(x, x, *phimx); // out %= (Phi_m(X),q)
}
// normalize
zz_p mm_inv;
conv(mm_inv, m_inv);
x *= mm_inv;
}
示例9: clear
inline void clear(vec_long& v) {
memset(v.elts(),0,sizeof(long)*v.length());
}
示例10: NullSpace
static
void NullSpace(long& r, vec_long& D, vec_ZZVec& M, long verbose)
{
long k, l, n;
long i, j;
long pos;
ZZ t1, t2;
ZZ *x, *y;
const ZZ& p = ZZ_p::modulus();
n = M.length();
D.SetLength(n);
for (j = 0; j < n; j++) D[j] = -1;
r = 0;
l = 0;
for (k = 0; k < n; k++) {
if (verbose && k % 10 == 0) cerr << "+";
pos = -1;
for (i = l; i < n; i++) {
rem(t1, M[i][k], p);
M[i][k] = t1;
if (pos == -1 && !IsZero(t1))
pos = i;
}
if (pos != -1) {
swap(M[pos], M[l]);
// make M[l, k] == -1 mod p, and make row l reduced
InvMod(t1, M[l][k], p);
NegateMod(t1, t1, p);
for (j = k+1; j < n; j++) {
rem(t2, M[l][j], p);
MulMod(M[l][j], t2, t1, p);
}
for (i = l+1; i < n; i++) {
// M[i] = M[i] + M[l]*M[i,k]
t1 = M[i][k]; // this is already reduced
x = M[i].elts() + (k+1);
y = M[l].elts() + (k+1);
for (j = k+1; j < n; j++, x++, y++) {
// *x = *x + (*y)*t1
mul(t2, *y, t1);
add(*x, *x, t2);
}
}
D[k] = l; // variable k is defined by row l
l++;
}
else {
r++;
}
}
}
示例11: seekPastChar
{
pk.clear();
// cerr << "FHEPubKey[";
seekPastChar(str, '['); // defined in NumbTh.cpp
// sanity check, verify that basic context parameters are correct
unsigned long m, p, r;
vector<long> gens, ords;
readContextBase(str, m, p, r, gens, ords);
assert(comparePAlgebra(pk.getContext().zMStar, m, p, r, gens, ords));
// Get the public encryption key itself
str >> pk.pubEncrKey;
// Get the vector of secret-key Hamming-weights
vec_long vl;
str >> vl;
pk.skHwts.resize(vl.length());
for (long i=0; i<(long)pk.skHwts.size(); i++) pk.skHwts[i] = vl[i];
// Get the key-switching matrices
long nMatrices;
str >> nMatrices;
pk.keySwitching.resize(nMatrices);
for (long i=0; i<nMatrices; i++) // read the matrix from input str
pk.keySwitching[i].readMatrix(str, pk.getContext());
// Get the key-switching map
Vec< Vec<long> > vvl;
str >> vvl;
pk.keySwitchMap.resize(vvl.length());
示例12: DynamicPtxtPowers
DynamicPtxtPowers(long _x, long _p, long nPowers, long _d=1) : p(_p)
{
assert (_x>=0 && _p>1 && nPowers>0); // Sanity check
v.SetLength(nPowers);
dpth.SetLength(nPowers);
for (long i=1; i<nPowers; i++) // Initializes nPowers empty slots
dpth[i]=v[i]=-1;
v[0] = _x % p; // store X itself in v[0]
dpth[0] = _d;
// cerr << " initial power="<<v[0]<<", initial depth="<<dpth[0];
}
示例13: getPower
// Returns the e'th power, computing it as needed
long DynamicPtxtPowers::getPower(long e)
{
// FIXME: Do we want to allow the vector to grow? If so then begin by
// checking e<v.length() and resizing if not. Currently throws an exception.
if (v.at(e-1)<0) { // Not computed yet, compute it now
long k = 1L<<(NextPowerOfTwo(e)-1); // largest power of two smaller than e
v[e-1] = getPower(e-k); // compute X^e = X^{e-k} * X^k
v[e-1] = MulMod(v[e-1], getPower(k), p);
dpth[e-1] = max(getDepth(k),getDepth(e-k)) +1;
nMults++;
}
return v[e-1];
}
示例14: size
long size() const { return v.length(); }
示例15: mul_aux
static
void mul_aux(mat_zz_p& X, const mat_zz_p& A, const mat_zz_p& B)
{
long n = A.NumRows();
long l = A.NumCols();
long m = B.NumCols();
if (l != B.NumRows())
Error("matrix mul: dimension mismatch");
X.SetDims(n, m);
if (m > 1) { // new preconditioning code
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
mul_aux_vec.SetLength(m);
long *acc = mul_aux_vec.elts();
long i, j, k;
for (i = 0; i < n; i++) {
const zz_p* ap = A[i].elts();
for (j = 0; j < m; j++) acc[j] = 0;
for (k = 0; k < l; k++) {
long aa = rep(ap[k]);
if (aa != 0) {
const zz_p* bp = B[k].elts();
long T1;
mulmod_precon_t aapinv = PrepMulModPrecon(aa, p, pinv);
for (j = 0; j < m; j++) {
T1 = MulModPrecon(rep(bp[j]), aa, p, aapinv);
acc[j] = AddMod(acc[j], T1, p);
}
}
}
zz_p *xp = X[i].elts();
for (j = 0; j < m; j++)
xp[j].LoopHole() = acc[j];
}
}
else { // just use the old code, w/o preconditioning
long p = zz_p::modulus();
double pinv = zz_p::ModulusInverse();
long i, j, k;
long acc, tmp;
for (i = 1; i <= n; i++) {
for (j = 1; j <= m; j++) {
acc = 0;
for(k = 1; k <= l; k++) {
tmp = MulMod(rep(A(i,k)), rep(B(k,j)), p, pinv);
acc = AddMod(acc, tmp, p);
}
X(i,j).LoopHole() = acc;
}
}
}
}