本文整理汇总了C++中sgraph类的典型用法代码示例。如果您正苦于以下问题:C++ sgraph类的具体用法?C++ sgraph怎么用?C++ sgraph使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了sgraph类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: create_vertex_data_from_const
std::vector<std::vector<T>> create_vertex_data_from_const(const sgraph& g, const T& init) {
std::vector<std::vector<T>> ret(g.get_num_partitions());
for (size_t i = 0; i < g.get_num_partitions(); ++i) {
ret[i] = std::vector<T>(g.vertex_partition(i).size(), init);
}
return ret;
}
示例2: vertex_apply
std::vector<std::shared_ptr<sarray<flexible_type>>>
vertex_apply(sgraph& g,
flex_type_enum result_type,
Fn fn) {
std::vector<std::shared_ptr<sarray<flexible_type>>> ret(g.get_num_partitions());
// get all the vertex partitions.
const std::vector<sframe>& vdata = g.vertex_group();
parallel_for((size_t)(0), (size_t)g.get_num_partitions(), [&](size_t i) {
std::shared_ptr<sarray<flexible_type>> ret_partition = std::make_shared<sarray<flexible_type>>();
ret_partition->open_for_write(1);
ret_partition->set_type(result_type);
transform(vdata[i], *ret_partition, fn);
ret_partition->close();
ret[i] = ret_partition;
});
return ret;
}
示例3: vertex_reduce
ResultType vertex_reduce(sgraph& g,
std::string column_name,
Reducer fn,
Combiner combine,
ResultType init = ResultType()) {
const std::vector<sframe>& vdata = g.vertex_group();
mutex lock;
ResultType ret = init;
parallel_for((size_t)(0), (size_t)g.get_num_partitions(), [&](size_t i) {
std::shared_ptr<sarray<flexible_type>> graph_field = vdata[i].select_column(column_name);
std::vector<ResultType> result =
graphlab::reduce(*graph_field,
[&](const flexible_type& left, ResultType& right) {
fn(left, right);
return true;
}, init);
std::unique_lock<mutex> result_lock(lock);
for (ResultType& res: result) {
combine(res, ret);
}
});
return ret;
}
示例4: ResultType
typename std::enable_if<!std::is_convertible<Reducer, std::string>::value, ResultType>::type
/*ResultType*/ vertex_reduce(sgraph& g,
Reducer fn,
Combiner combine,
ResultType init = ResultType()) {
const std::vector<sframe>& vdata = g.vertex_group();
mutex lock;
ResultType ret = init;
parallel_for((size_t)(0), (size_t)g.get_num_partitions(), [&](size_t i) {
std::vector<ResultType> result =
graphlab::reduce(vdata[i],
[&](const std::vector<flexible_type>& left, ResultType& right) {
fn(left, right);
return true;
}, init);
std::unique_lock<mutex> result_lock(lock);
for (ResultType& res: result) {
combine(res, ret);
}
});
return ret;
}
示例5: execute
virtual void execute(sgraph& output,
const std::vector<sgraph*>& parents) {
output.copy_edge_field(field, new_field, groupa, groupb);
}
示例6: triple_apply_pagerank
void triple_apply_pagerank(sgraph& g, size_t& num_iter, double& total_pagerank, double& total_delta) {
typedef sgraph_compute::sgraph_engine<flexible_type>::graph_data_type graph_data_type;
typedef sgraph::edge_direction edge_direction;
// initialize every vertex with core id kmin
g.init_vertex_field(PAGERANK_COLUMN, reset_probability);
g.init_vertex_field(PREV_PAGERANK_COLUMN, 1.0);
g.init_vertex_field(DELTA_COLUMN, 0.0);
// Initialize degree count
sgraph_compute::sgraph_engine<flexible_type> ga;
auto degrees = ga.gather(
g,
[=](const graph_data_type& center,
const graph_data_type& edge,
const graph_data_type& other,
edge_direction edgedir,
flexible_type& combiner) {
combiner += 1;
},
flexible_type(0),
edge_direction::OUT_EDGE);
g.add_vertex_field(degrees, OUT_DEGREE_COLUMN);
num_iter = 0;
total_delta = 0.0;
total_pagerank = 0.0;
timer mytimer;
// Triple apply
double w = (1 - reset_probability);
const size_t degree_idx = g.get_vertex_field_id(OUT_DEGREE_COLUMN);
const size_t pr_idx = g.get_vertex_field_id(PAGERANK_COLUMN);
const size_t old_pr_idx = g.get_vertex_field_id(PREV_PAGERANK_COLUMN);
sgraph_compute::triple_apply_fn_type apply_fn =
[&](sgraph_compute::edge_scope& scope) {
auto& source = scope.source();
auto& target = scope.target();
scope.lock_vertices();
target[pr_idx] += w * source[old_pr_idx] / source[degree_idx];
scope.unlock_vertices();
};
table_printer table({{"Iteration", 0},
{"L1 change in pagerank", 0}});
table.print_header();
for (size_t iter = 0; iter < max_iterations; ++iter) {
if(cppipc::must_cancel()) {
log_and_throw(std::string("Toolkit cancelled by user."));
}
mytimer.start();
++num_iter;
g.init_vertex_field(PAGERANK_COLUMN, reset_probability);
sgraph_compute::triple_apply(g, apply_fn, {PAGERANK_COLUMN});
// compute the change in pagerank
auto delta = sgraph_compute::vertex_apply(
g,
flex_type_enum::FLOAT,
[&](const std::vector<flexible_type>& vdata) {
return std::abs((double)(vdata[pr_idx]) - (double)(vdata[old_pr_idx]));
});
// make the current pagerank the old pagerank
g.copy_vertex_field(PAGERANK_COLUMN, PREV_PAGERANK_COLUMN);
g.replace_vertex_field(delta, DELTA_COLUMN);
total_delta =
sgraph_compute::vertex_reduce<double>(g,
DELTA_COLUMN,
[](const flexible_type& v, double& acc) {
acc += (flex_float)v;
},
[](const double& v, double& acc) {
acc += v;
});
table.print_row(iter+1, total_delta);
// check convergence
if (total_delta < threshold) {
break;
}
} // end of pagerank iterations
table.print_footer();
// cleanup
g.remove_vertex_field(PREV_PAGERANK_COLUMN);
g.remove_vertex_field(OUT_DEGREE_COLUMN);
total_pagerank =
sgraph_compute::vertex_reduce<double>(g,
PAGERANK_COLUMN,
[](const flexible_type& v, double& acc) {
//.........这里部分代码省略.........
示例7: triple_apply_kcore
/**
* We start with every vertex having core_id = KMAX,
* Each iteration, while the gather will +1 for neighbors whose core_id > CURRENT_K
* If the gather is > 0 and <= CURRENT_K, then we set the core_id to CURRENT_K (indicate its deleted).
* And repeat...
*/
void triple_apply_kcore(sgraph& g) {
typedef sgraph_compute::sgraph_engine<flexible_type>::graph_data_type graph_data_type;
typedef sgraph::edge_direction edge_direction;
// initialize every vertex with core id kmin
g.init_vertex_field(CORE_ID_COLUMN, KMIN);
g.init_vertex_field(DEGREE_COLUMN, 0);
g.init_vertex_field(DELETED_COLUMN, 0);
g.init_edge_field(DELETED_COLUMN, 0);
// Initialize degree count
sgraph_compute::sgraph_engine<flexible_type> ga;
auto degrees = ga.gather(
g,
[=](const graph_data_type& center,
const graph_data_type& edge,
const graph_data_type& other,
edge_direction edgedir,
flexible_type& combiner) {
combiner += 1;
},
flexible_type(0),
edge_direction::ANY_EDGE);
g.replace_vertex_field(degrees, DEGREE_COLUMN);
// Initialize fields
long vertices_left = g.num_vertices();
std::atomic<long> num_vertices_changed;
const size_t core_idx = g.get_vertex_field_id(CORE_ID_COLUMN);
const size_t degree_idx = g.get_vertex_field_id(DEGREE_COLUMN);
const size_t v_deleted_idx= g.get_vertex_field_id(DELETED_COLUMN);
const size_t e_deleted_idx= g.get_edge_field_id(DELETED_COLUMN);
// Triple apply
sgraph_compute::triple_apply_fn_type apply_fn =
[&](sgraph_compute::edge_scope& scope) {
auto& source = scope.source();
auto& target = scope.target();
auto& edge = scope.edge();
scope.lock_vertices();
// edge is not deleted
if (!edge[e_deleted_idx]) {
// check source degree
if (!source[v_deleted_idx] && source[degree_idx] <= CURRENT_K) {
source[core_idx] = CURRENT_K;
source[v_deleted_idx] = 1;
num_vertices_changed++;
}
// check target degree
if (!target[v_deleted_idx] && target[degree_idx] <= CURRENT_K) {
target[core_idx] = CURRENT_K;
target[v_deleted_idx] = 1;
num_vertices_changed ++;
}
// delete the edge if either side is deleted
if (source[v_deleted_idx] || target[v_deleted_idx]) {
edge[e_deleted_idx] = 1;
--source[degree_idx];
--target[degree_idx];
// We need to check again if the deletion of this edge
// causing either source or target vertex to be deleted.
if (!source[v_deleted_idx] && source[degree_idx] <= CURRENT_K) {
source[core_idx] = CURRENT_K;
source[v_deleted_idx] = 1;
num_vertices_changed++;
}
// check target degree
if (!target[v_deleted_idx] && target[degree_idx] <= CURRENT_K) {
target[core_idx] = CURRENT_K;
target[v_deleted_idx] = 1;
num_vertices_changed++;
}
}
}
scope.unlock_vertices();
};
for (CURRENT_K = KMIN; CURRENT_K < KMAX; ++CURRENT_K) {
while (true) {
if(cppipc::must_cancel()) {
log_and_throw(std::string("Toolkit cancelled by user."));
}
num_vertices_changed = 0;
sgraph_compute::triple_apply(g, apply_fn, {CORE_ID_COLUMN, DEGREE_COLUMN, DELETED_COLUMN}, {DELETED_COLUMN});
if (num_vertices_changed == 0)
break;
vertices_left -= num_vertices_changed;
if (CURRENT_K == 0 || num_vertices_changed == 0 || vertices_left == 0) {
// we are done with the current core.
break;
}
ASSERT_GT(vertices_left, 0);
}
logprogress_stream << "Finish computing core " << CURRENT_K << "\t Vertices left: "
//.........这里部分代码省略.........