当前位置: 首页>>代码示例>>C++>>正文


C++ sgraph类代码示例

本文整理汇总了C++中sgraph的典型用法代码示例。如果您正苦于以下问题:C++ sgraph类的具体用法?C++ sgraph怎么用?C++ sgraph使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。


在下文中一共展示了sgraph类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: create_vertex_data_from_const

std::vector<std::vector<T>> create_vertex_data_from_const(const sgraph& g, const T& init) {
  std::vector<std::vector<T>> ret(g.get_num_partitions());
  for (size_t i = 0; i < g.get_num_partitions(); ++i) {
    ret[i] = std::vector<T>(g.vertex_partition(i).size(), init);
  }
  return ret;
}
开发者ID:Bhushan1002,项目名称:SFrame,代码行数:7,代码来源:sgraph_fast_triple_apply.hpp

示例2: vertex_apply

std::vector<std::shared_ptr<sarray<flexible_type>>> 
vertex_apply(sgraph& g,
             flex_type_enum result_type,
             Fn fn) {
  std::vector<std::shared_ptr<sarray<flexible_type>>> ret(g.get_num_partitions());
  // get all the vertex partitions.
  const std::vector<sframe>& vdata = g.vertex_group();
  parallel_for((size_t)(0), (size_t)g.get_num_partitions(), [&](size_t i) {
    std::shared_ptr<sarray<flexible_type>> ret_partition = std::make_shared<sarray<flexible_type>>();
    ret_partition->open_for_write(1);
    ret_partition->set_type(result_type);
    transform(vdata[i], *ret_partition, fn);
    ret_partition->close();
    ret[i] = ret_partition;
  });
  return ret;
}
开发者ID:Hannah1999,项目名称:Dato-Core,代码行数:17,代码来源:sgraph_vertex_apply.hpp

示例3: vertex_reduce

ResultType vertex_reduce(sgraph& g, 
                         std::string column_name,
                         Reducer fn,
                         Combiner combine,
                         ResultType init = ResultType()) {
  const std::vector<sframe>& vdata = g.vertex_group();
  mutex lock;
  ResultType ret = init;
  parallel_for((size_t)(0), (size_t)g.get_num_partitions(), [&](size_t i) {
    std::shared_ptr<sarray<flexible_type>> graph_field = vdata[i].select_column(column_name);
    std::vector<ResultType> result = 
        graphlab::reduce(*graph_field, 
                         [&](const flexible_type& left, ResultType& right) {
                           fn(left, right);
                           return true;
                         }, init);
    std::unique_lock<mutex> result_lock(lock);
    for (ResultType& res: result) {
      combine(res, ret);
    }
  });
  return ret;
}
开发者ID:Hannah1999,项目名称:Dato-Core,代码行数:23,代码来源:sgraph_vertex_apply.hpp

示例4: ResultType

typename std::enable_if<!std::is_convertible<Reducer, std::string>::value, ResultType>::type
/*ResultType*/ vertex_reduce(sgraph& g, 
                             Reducer fn,
                             Combiner combine,
                             ResultType init = ResultType()) {
  const std::vector<sframe>& vdata = g.vertex_group();
  mutex lock;
  ResultType ret = init;
  parallel_for((size_t)(0), (size_t)g.get_num_partitions(), [&](size_t i) {
    std::vector<ResultType> result = 
        graphlab::reduce(vdata[i], 
                         [&](const std::vector<flexible_type>& left, ResultType& right) {
                           fn(left, right);
                           return true;
                         }, init);

    std::unique_lock<mutex> result_lock(lock);
    for (ResultType& res: result) {
      combine(res, ret);
    }
  });
  return ret;
}
开发者ID:Hannah1999,项目名称:Dato-Core,代码行数:23,代码来源:sgraph_vertex_apply.hpp

示例5: execute

 virtual void execute(sgraph& output,
                      const std::vector<sgraph*>& parents) {
     output.copy_edge_field(field, new_field, groupa, groupb);
 }
开发者ID:pauldevos,项目名称:SFrame,代码行数:4,代码来源:unity_sgraph_lazy_ops.hpp

示例6: triple_apply_pagerank

void triple_apply_pagerank(sgraph& g, size_t& num_iter, double& total_pagerank, double& total_delta) {
  typedef sgraph_compute::sgraph_engine<flexible_type>::graph_data_type graph_data_type;
  typedef sgraph::edge_direction edge_direction;

  // initialize every vertex with core id kmin
  g.init_vertex_field(PAGERANK_COLUMN, reset_probability);
  g.init_vertex_field(PREV_PAGERANK_COLUMN, 1.0);
  g.init_vertex_field(DELTA_COLUMN, 0.0);

  // Initialize degree count
  sgraph_compute::sgraph_engine<flexible_type> ga;
  auto degrees = ga.gather(
          g,
          [=](const graph_data_type& center,
              const graph_data_type& edge,
              const graph_data_type& other,
              edge_direction edgedir,
              flexible_type& combiner) {
              combiner += 1;
          },
          flexible_type(0),
          edge_direction::OUT_EDGE);
  g.add_vertex_field(degrees, OUT_DEGREE_COLUMN);

  num_iter = 0;
  total_delta = 0.0;
  total_pagerank = 0.0;
  timer mytimer;

  // Triple apply
  double w = (1 - reset_probability);
  const size_t degree_idx = g.get_vertex_field_id(OUT_DEGREE_COLUMN);
  const size_t pr_idx = g.get_vertex_field_id(PAGERANK_COLUMN);
  const size_t old_pr_idx = g.get_vertex_field_id(PREV_PAGERANK_COLUMN);

  sgraph_compute::triple_apply_fn_type apply_fn =
    [&](sgraph_compute::edge_scope& scope) {
      auto& source = scope.source();
      auto& target = scope.target();
      scope.lock_vertices();
      target[pr_idx] += w * source[old_pr_idx] / source[degree_idx];
      scope.unlock_vertices();
    };

  table_printer table({{"Iteration", 0}, 
                                {"L1 change in pagerank", 0}});
  table.print_header();

  for (size_t iter = 0; iter < max_iterations; ++iter) {
    if(cppipc::must_cancel()) {
      log_and_throw(std::string("Toolkit cancelled by user."));
    }

    mytimer.start();
    ++num_iter;

    g.init_vertex_field(PAGERANK_COLUMN, reset_probability);

    sgraph_compute::triple_apply(g, apply_fn, {PAGERANK_COLUMN});

    // compute the change in pagerank
    auto delta = sgraph_compute::vertex_apply(
        g,
        flex_type_enum::FLOAT,
        [&](const std::vector<flexible_type>& vdata) {
          return std::abs((double)(vdata[pr_idx]) - (double)(vdata[old_pr_idx]));
        });

    // make the current pagerank the old pagerank
    g.copy_vertex_field(PAGERANK_COLUMN, PREV_PAGERANK_COLUMN);
    g.replace_vertex_field(delta, DELTA_COLUMN);

    total_delta = 
        sgraph_compute::vertex_reduce<double>(g, 
                               DELTA_COLUMN,
                               [](const flexible_type& v, double& acc) {
                                 acc += (flex_float)v;
                               },
                               [](const double& v, double& acc) {
                                 acc += v;
                               });


    table.print_row(iter+1, total_delta);

    // check convergence
    if (total_delta < threshold) {
      break;
    }
  } // end of pagerank iterations

  table.print_footer();

  // cleanup
  g.remove_vertex_field(PREV_PAGERANK_COLUMN);
  g.remove_vertex_field(OUT_DEGREE_COLUMN);
  total_pagerank =
      sgraph_compute::vertex_reduce<double>(g, 
                                     PAGERANK_COLUMN,
                                     [](const flexible_type& v, double& acc) {
//.........这里部分代码省略.........
开发者ID:Hannah1999,项目名称:Dato-Core,代码行数:101,代码来源:pagerank_sgraph.cpp

示例7: triple_apply_kcore

/**
 * We start with every vertex having core_id = KMAX,
 * Each iteration, while the gather will +1 for neighbors whose core_id > CURRENT_K 
 * If the gather is > 0 and <= CURRENT_K, then we set the core_id to CURRENT_K (indicate its deleted).
 * And repeat...
 */
void triple_apply_kcore(sgraph& g) {
  typedef sgraph_compute::sgraph_engine<flexible_type>::graph_data_type graph_data_type;
  typedef sgraph::edge_direction edge_direction;

  // initialize every vertex with core id kmin
  g.init_vertex_field(CORE_ID_COLUMN, KMIN);
  g.init_vertex_field(DEGREE_COLUMN, 0);
  g.init_vertex_field(DELETED_COLUMN, 0);
  g.init_edge_field(DELETED_COLUMN, 0);

  // Initialize degree count
  sgraph_compute::sgraph_engine<flexible_type> ga;
  auto degrees = ga.gather(
          g,
          [=](const graph_data_type& center,
              const graph_data_type& edge,
              const graph_data_type& other,
              edge_direction edgedir,
              flexible_type& combiner) {
              combiner += 1;
          },
          flexible_type(0),
          edge_direction::ANY_EDGE);
  g.replace_vertex_field(degrees, DEGREE_COLUMN);

  // Initialize fields
  long vertices_left = g.num_vertices();
  std::atomic<long> num_vertices_changed;
  const size_t core_idx = g.get_vertex_field_id(CORE_ID_COLUMN);
  const size_t degree_idx = g.get_vertex_field_id(DEGREE_COLUMN);
  const size_t v_deleted_idx= g.get_vertex_field_id(DELETED_COLUMN);
  const size_t e_deleted_idx= g.get_edge_field_id(DELETED_COLUMN);

  // Triple apply
  sgraph_compute::triple_apply_fn_type apply_fn =
  [&](sgraph_compute::edge_scope& scope) {
    auto& source = scope.source();
    auto& target = scope.target();
    auto& edge = scope.edge();
    scope.lock_vertices();
    // edge is not deleted
    if (!edge[e_deleted_idx]) {
      // check source degree
      if (!source[v_deleted_idx] && source[degree_idx] <= CURRENT_K) {
        source[core_idx] = CURRENT_K;
        source[v_deleted_idx] = 1;
        num_vertices_changed++;
      }
      // check target degree
      if (!target[v_deleted_idx] && target[degree_idx] <= CURRENT_K) {
        target[core_idx] = CURRENT_K;
        target[v_deleted_idx] = 1;
        num_vertices_changed ++;
      }
      // delete the edge if either side is deleted
      if (source[v_deleted_idx] || target[v_deleted_idx]) {
        edge[e_deleted_idx] = 1;
        --source[degree_idx];
        --target[degree_idx];
        // We need to check again if the deletion of this edge 
        // causing either source or target vertex to be deleted.
        if (!source[v_deleted_idx] && source[degree_idx] <= CURRENT_K) {
          source[core_idx] = CURRENT_K;
          source[v_deleted_idx] = 1;
          num_vertices_changed++;
        }
        // check target degree
        if (!target[v_deleted_idx] && target[degree_idx] <= CURRENT_K) {
          target[core_idx] = CURRENT_K;
          target[v_deleted_idx] = 1;
          num_vertices_changed++;
        }
      }
    }
    scope.unlock_vertices();
  };

  for (CURRENT_K = KMIN; CURRENT_K < KMAX; ++CURRENT_K) {
    while (true) {
      if(cppipc::must_cancel()) {
        log_and_throw(std::string("Toolkit cancelled by user."));
      }
      num_vertices_changed = 0;
      sgraph_compute::triple_apply(g, apply_fn, {CORE_ID_COLUMN, DEGREE_COLUMN, DELETED_COLUMN}, {DELETED_COLUMN});
      if (num_vertices_changed == 0)
        break;
      vertices_left -= num_vertices_changed;
      if (CURRENT_K == 0 || num_vertices_changed == 0 || vertices_left == 0) {
        // we are done with the current core.
        break;
      }
      ASSERT_GT(vertices_left, 0);
    }
    logprogress_stream << "Finish computing core " << CURRENT_K << "\t Vertices left: "
//.........这里部分代码省略.........
开发者ID:Hannah1999,项目名称:Dato-Core,代码行数:101,代码来源:kcore_sgraph.cpp


注:本文中的sgraph类示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。