本文整理汇总了C++中session::read_data方法的典型用法代码示例。如果您正苦于以下问题:C++ session::read_data方法的具体用法?C++ session::read_data怎么用?C++ session::read_data使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类session
的用法示例。
在下文中一共展示了session::read_data方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: test_cache_timestamp
static void test_cache_timestamp(session &sess)
{
argument_data data("this is a timestamp test");
key k("this is a timestamp test key");
sess.transform(k);
dnet_io_control ctl;
memset(&ctl, 0, sizeof(ctl));
ctl.data = data.data();
dnet_current_time(&ctl.io.timestamp);
ctl.io.flags = DNET_IO_FLAGS_CACHE;
ctl.io.start = 5;
ctl.io.size = data.size();
memcpy(&ctl.id, &k.id(), sizeof(dnet_id));
ctl.fd = -1;
ELLIPTICS_REQUIRE(write_result, sess.write_data(ctl));
sleep(ctl.io.start + 2);
ELLIPTICS_REQUIRE(read_result, sess.read_data(k, 0, 0));
auto io = read_result.get_one().io_attribute();
BOOST_REQUIRE_EQUAL(io->timestamp.tsec, ctl.io.timestamp.tsec);
BOOST_REQUIRE_EQUAL(io->timestamp.tnsec, ctl.io.timestamp.tnsec);
}
示例2: cache_read_check_lru
void cache_read_check_lru(session &sess, int id, lru_list_emulator_t &lru_list_emulator,
ioremap::cache::cache_manager *cache) {
key idKey = key(boost::lexical_cast<std::string>(id));
std::unique_ptr<async_read_result> read_result;
int objects_number_before = cache->get_total_cache_stats().number_of_objects;
if (!lru_list_emulator.contains(id)) {
ELLIPTICS_WARN_ERROR(read_result, sess.read_data(idKey, 0, 0), -ENOENT);
} else {
ELLIPTICS_REQUIRE(read_result, sess.read_data(idKey, 0, 0));
lru_list_emulator.update(id);
}
int objects_number_after = cache->get_total_cache_stats().number_of_objects;
int objects_removed = objects_number_before - objects_number_after;
for (int i = 0; i < objects_removed; ++i) {
lru_list_emulator.remove_last();
}
}
示例3: test_error_message
static void test_error_message(session &s, const std::string &id, int err)
{
s.set_filter(filters::all);
ELLIPTICS_REQUIRE_ERROR(read_result, s.read_data(id, 0, 0), err);
sync_read_result sync_result = read_result.get();
BOOST_REQUIRE(sync_result.size() > 0);
read_result_entry entry = sync_result[0];
BOOST_REQUIRE_EXCEPTION(entry.io_attribute(), not_found_error, test_error_check_exception);
}
示例4: test_oplock
/*
* After writing of a key to cache, keys data will be synced to disk cache_sync_timeout seconds later.
* Before syncing a key, dnet_oplock() taken for this key. After syncing a key, key's oplock released.
*
* Following test checks this mechanics by calling write_data(key, data) multiple times with the same data,
* then writing to cache by calling write_cache(key, cache_data) cache data, waiting cache_sync_timeout seconds
* until cache is synced back to disk (backend), thereby taking oplock. Then called write_data(key, result_data).
* If last write_data() operation timeouted, then dnet_opunlock() (after cache sync) is not properly realeased key's oplock.
*/
static void test_oplock(session &sess)
{
const key id(std::string("oplock_key"));
const std::string data = "some_data";
const std::string cache_data = "cache_data";
const std::string result_data = "result_data";
const size_t num_writes = 10;
std::unique_ptr<async_write_result[]> results(new async_write_result[num_writes]);
for (size_t i = 0; i < num_writes; ++i) {
results[i] = std::move(sess.write_data(id, data, 0));
}
for (size_t i = 0; i < num_writes; ++i) {
results[i].wait();
}
ELLIPTICS_COMPARE_REQUIRE(read_data_result, sess.read_data(id, 0, 0), data);
ELLIPTICS_REQUIRE(async_cache_write, sess.write_cache(id, cache_data, 0));
sleep(cache_sync_timeout + 1);
ELLIPTICS_COMPARE_REQUIRE(read_cache_result, sess.read_data(id, 0, 0), cache_data);
ELLIPTICS_REQUIRE(async_write, sess.write_data(id, result_data, 0));
ELLIPTICS_COMPARE_REQUIRE(read_result, sess.read_data(id, 0, 0), result_data);
}
示例5: test_backend_weights
// Writing of keys to all groups updates backend weights for every backend they
// were written. Writes to slow backend leads to significant reduction of this
// backend weigth comparing to faster ones.
// read_data() uses backend weights to choose fastest group via dnet_mix_states().
//
// Following test checks this mechanics by reading of previously written keys and
// checking read distribution among backends. Slow backend simulated by setting artificial delay.
// Expected outcome should be that reads would be rarely sent to that slow backend.
//
// We define "rarely" as no more than 1% of total reads. This value was empirically found.
static void test_backend_weights(session &sess)
{
// set backends delay to simulate slow backends i/o behaviour for particular group
set_backends_delay_for_group(sess, slow_group_id, backend_delay);
const int num_keys = 10;
for (int i = 0; i < num_keys; ++i) {
const key id = std::string("key_") + std::to_string(static_cast<long long>(i));
const std::string data = "some_data";
ELLIPTICS_REQUIRE(async_write, sess.write_data(id, data, 0));
}
const int num_reads = 1000;
int num_slow_group_reads = 0;
for (int i = 0; i < num_reads; ++i) {
const key id = std::string("key_") + std::to_string(static_cast<long long>(i % num_keys));
auto async_result = sess.read_data(id, 0, 0);
async_result.wait();
read_result_entry read_result;
async_result.get(read_result);
const dnet_cmd *cmd = read_result.command();
const int group_id = cmd->id.group_id;
if ( group_id == slow_group_id )
++num_slow_group_reads;
}
const int max_reads_from_slow_group = 10;
BOOST_REQUIRE_MESSAGE(num_slow_group_reads < max_reads_from_slow_group,
"Too much reads from slow group (it means that backend weights are not working or backend hardware is extremely slow): "
"num_slow_group_reads: " + std::to_string(static_cast<long long>(num_slow_group_reads)) +
", max_reads_from_slow_group: " + std::to_string(static_cast<long long>(max_reads_from_slow_group)));
set_backends_delay_for_group(sess, slow_group_id, 0);
}